1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
---
title: "The freqlist function"
author: "Tina Gunderson and Ethan Heinzen"
output:
rmarkdown::html_vignette:
toc: yes
toc_depth: 3
vignette: |
%\VignetteIndexEntry{The freqlist function}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, tidy.opts=list(width.cutoff=80), tidy=TRUE, comment=NA)
options(width=80, max.print=1000)
```
# Overview
`freqlist()` is a function meant to produce output similar to SAS's `PROC FREQ` procedure when using the `/list` option of the `TABLE` statement.
`freqlist()` provides options for handling missing or sparse data and can provide cumulative counts and percentages based on subgroups.
It depends on the `knitr` package for printing.
```{r message = FALSE}
require(arsenal)
```
## Sample dataset
For our examples, we'll load the `mockstudy` data included with this package and use it to create a basic table.
Because they have fewer levels, for brevity, we'll use the variables arm, sex, and mdquality.s to create the example table.
We'll retain NAs in the table creation.
See the appendix for notes regarding default NA handling and other useful information regarding tables in R.
```{r loading.data}
# load the data
data(mockstudy)
# retain NAs when creating the table using the useNA argument
tab.ex <- table(mockstudy[, c("arm", "sex", "mdquality.s")], useNA="ifany")
```
# The `freqlist` object
The `freqlist()` function is an S3 generic (with methods for tables and formulas) which returns an object of class `"freqlist"`.
```{r console.output}
example1 <- freqlist(tab.ex)
str(example1)
# view the data frame portion of freqlist output
head(as.data.frame(example1)) ## or use as.data.frame(example1)
```
# Basic output using `summary()`
The `summary` method for `freqlist()` relies on the `kable()` function (in the `knitr` package) for printing.
`knitr::kable()` converts the output to markdown which can be printed in the console or easily rendered in
Word, PDF, or HTML documents.
Note that you must supply `results="asis"` to properly format the markdown output.
```{r, results = 'asis'}
summary(example1)
```
You can print a title for the table using the `title=` argument.
```{r, results = 'asis'}
summary(example1, title="Basic freqlist output")
```
You can also easily pull out the `freqlist` data frame for more complicated formatting or manipulation
(e.g. with another function such as `xtable()` or `pander()`) using `as.data.frame(summary())`:
```{r}
head(as.data.frame(summary(example1)))
```
# Using a formula with `freqlist`
Instead of passing a pre-computed table to `freqlist()`, you can instead pass a formula, which will be
in turn passed to the `xtabs()` function. Additional `freqlist()` arguments are passed through the `...`
to the `freqlist()` table method.
Note that `freqlist()` sets the `addNA=TRUE` argument by default:
```{r results='asis'}
summary(freqlist(~ arm + sex + mdquality.s, data = mockstudy))
```
One can also set NAs to an explicit value using `includeNA()`.
```{r results='asis'}
summary(freqlist(~ arm + sex + includeNA(mdquality.s, "Missing"), data = mockstudy))
```
In fact, since `xtabs()` allows for left-hand-side weights, so does `freqlist()`!
```{r results='asis'}
mockstudy$weights <- c(10000, rep(1, nrow(mockstudy) - 1))
summary(freqlist(weights ~ arm + sex + addNA(mdquality.s), data = mockstudy))
```
You can also specify multiple weights:
```{r results='asis'}
mockstudy$weights2 <- c(rep(1, nrow(mockstudy) - 1), 10000)
summary(freqlist(list(weights, weights2) ~ arm + sex + addNA(mdquality.s), data = mockstudy))
```
# Rounding percentage digits or changing variable names for printing
The `digits.pct=` argument takes a single numeric value and controls the number of digits of percentages in the output.
The `digits.count=` argument takes a similar argument and controls the number of digits of the count columns.
The `labelTranslations=` argument is a named character vector or list.
Both options are applied in the following example.
```{r labelTranslations, results = 'asis'}
example2 <- freqlist(tab.ex, labelTranslations = c(arm = "Treatment Arm", sex = "Gender", mdquality.s = "LASA QOL"),
digits.pct = 1, digits.count = 1)
summary(example2)
```
# Additional examples
## Including combinations with frequencies of zero
The `sparse=` argument takes a single logical value as input. The default option is `FALSE`.
If set to `TRUE`, the sparse option will include combinations with frequencies of zero in the list of results.
As our initial table did not have any such levels, we create a second table to use in our example.
```{r sparse, results = 'asis'}
summary(freqlist(~ race + sex + arm, data = mockstudy, sparse = TRUE, digits.pct=1))
```
## Options for NA handling
The various `na.options=` allow you to include or exclude data with missing values for one or more factor
levels in the counts and percentages, as well as show the missing data but exclude it from the cumulative
counts and percentages. The default option is to include all combinations with missing values.
```{r na.options, results = 'asis'}
summary(freqlist(tab.ex, na.options="include"))
summary(freqlist(tab.ex, na.options="showexclude"))
summary(freqlist(tab.ex, na.options="remove"))
```
## Frequency counts and percentages subset by factor levels
The `strata=` argument internally subsets the data by the specified factor prior to calculating cumulative counts and percentages.
By default, when used each subset will print in a separate table. Using the `single = TRUE` option when printing will collapse
the subsetted result into a single table.
```{r freq.counts, results='asis'}
example3 <- freqlist(tab.ex, strata = c("arm","sex"))
summary(example3)
#using the single = TRUE argument will collapse results into a single table for printing
summary(example3, single = TRUE)
```
## Show only the "n" most common combinations in each table (`head()` and `sort()`)
You can now sort `freqlist()` objects, and, by taking the `head()` of the summary, output the most common frequencies. This looks
the prettiest with `dupLabels=TRUE`.
```{r}
head(summary(sort(example1, decreasing = TRUE), dupLabels = TRUE))
```
## Change labels on the fly
```{r changelabs, results = 'asis'}
labs <- c(arm = "Arm", sex = "Sex", mdquality.s = "QOL", freqPercent = "%")
labels(example1) <- labs
summary(example1)
```
You can also supply `labelTranslations=` to `summary()`.
```{r, results = 'asis'}
summary(example1, labelTranslations = labs)
```
## Using `xtable()` to format and print `freqlist()` results
Fair warning: `xtable()` has kind of a steep learning curve. These examples are given without explanation, for more advanced users.
```{r results='asis'}
require(xtable)
# set up custom function for xtable text
italic <- function(x) paste0('<i>', x, '</i>')
xftbl <- xtable(as.data.frame(summary(example1)),
caption = "xtable formatted output of freqlist data frame", align="|r|r|r|r|c|c|c|r|")
# change the column names
names(xftbl)[1:3] <- c("Arm", "Gender", "LASA QOL")
print(xftbl, sanitize.colnames.function = italic, include.rownames = FALSE, type = "html", comment = FALSE)
```
## Use `freqlist` in bookdown
Since the backbone of `freqlist()` is `knitr::kable()`, tables still render well in bookdown. However, `print.summary.freqlist()` doesn't use
the `caption=` argument of `kable()`, so some tables may not have a properly numbered caption. To fix this, use the method described
[on the bookdown site](https://bookdown.org/yihui/bookdown/tables.html) to give the table a tag/ID.
```{r eval=FALSE}
summary(freqlist(~ sex + age, data = mockstudy), title="(\\#tab:mytableby) Caption here")
```
# Appendix: Notes regarding table options in R
## NAs
There are several widely used options for basic tables in R. The `table()` function in base R is probably the most common;
by default it excludes NA values. You can change NA handling in `base::table()` using the `useNA=` or `exclude=` arguments.
```{r}
# base table default removes NAs
tab.d1 <- base::table(mockstudy[, c("arm", "sex", "mdquality.s")], useNA="ifany")
tab.d1
```
`xtabs()` is similar to `table()`, but uses a formula-based syntax. However, NAs must be explicitly added to each factor
using the `addNA()` function or using the argument `addNA = TRUE`.
```{r}
# without specifying addNA
tab.d2 <- xtabs(formula = ~ arm + sex + mdquality.s, data = mockstudy)
tab.d2
# now with addNA
tab.d3 <- xtabs(~ arm + sex + addNA(mdquality.s), data = mockstudy)
tab.d3
```
Since the formula method of `freqlist()` uses `xtabs()`, NAs should be treated in the same way.
`includeNA()` can also be helpful here for setting explicit NA values.
## Table dimname names (dnn)
Supplying a data.frame to the `table()` function without giving columns individually will create a contingency table
using all variables in the data.frame.
However, if the columns of a data.frame or matrix are supplied separately (i.e., as vectors),
column names will not be preserved.
```{r}
# providing variables separately (as vectors) drops column names
table(mockstudy$arm, mockstudy$sex, mockstudy$mdquality.s)
```
If desired, you can use the `dnn=` argument to pass variable names.
```{r}
# add the column name labels back using dnn option in base::table
table(mockstudy$arm, mockstudy$sex, mockstudy$mdquality.s, dnn=c("Arm", "Sex", "QOL"))
```
You can also name the arguments to `table()`:
```{r}
table(Arm = mockstudy$arm, Sex = mockstudy$sex, QOL = mockstudy$mdquality.s)
```
If using `freqlist()`, you can provide the labels directly to `freqlist()` or to `summary()` using `labelTranslations=`.
|