1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
|
---
title: "The modelsum function"
author: "Beth Atkinson, Ethan Heinzen, Pat Votruba, Jason Sinnwell, Shannon McDonnell and Greg Dougherty"
output:
rmarkdown::html_vignette:
toc: yes
toc_depth: 3
vignette: |
%\VignetteIndexEntry{The modelsum function}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
---
```{r, echo=FALSE, message=FALSE, results='hide', warning=FALSE}
require(knitr)
require(broom)
require(MASS)
require(pROC)
require(rpart)
opts_chunk$set(comment = NA, echo=TRUE, prompt=TRUE, collapse=TRUE)
```
# Introduction
Very often we are asked to summarize model results from multiple fits into a nice table.
The endpoint might be of different types (e.g., survival, case/control, continuous) and there
may be several independent variables that we want to examine univariately or adjusted for certain
variables such as age and sex. Locally at Mayo, the SAS macros `%modelsum`, `%glmuniv`, and `%logisuni`
were written to create such summary tables. With the increasing interest in R, we have developed the
function `modelsum` to create similar tables within the R environment.
In developing the `modelsum` function, the goal was to bring the best features of these macros into an R function.
However, the task was not simply to duplicate all the functionality, but rather to make use of R's strengths
(modeling, method dispersion, flexibility in function definition and output format) and make a tool that fits
the needs of R users. Additionally, the results needed to fit within the general reproducible research framework
so the tables could be displayed within an R markdown report.
This report provides step-by-step directions for using the functions associated with `modelsum`.
All functions presented here are available within the `arsenal` package. An assumption is made that users
are somewhat familiar with R markdown documents. For those who are new to the topic, a good initial
resource is available at [rmarkdown.rstudio.com](https://rmarkdown.rstudio.com/).
# Simple Example
The first step when using the `modelsum` function is to load the `arsenal` package. All the examples in this report
use a dataset called `mockstudy` made available by Paul Novotny which includes a variety of types of variables
(character, numeric, factor, ordered factor, survival) to use as examples.
```{r, load-data}
require(arsenal)
data(mockstudy) # load data
dim(mockstudy) # look at how many subjects and variables are in the dataset
# help(mockstudy) # learn more about the dataset and variables
str(mockstudy) # quick look at the data
```
To create a simple linear regression table (the default), use a formula statement to specify the variables
that you want summarized. The example below predicts BMI with the variables sex and age.
```{r simple1}
tab1 <- modelsum(bmi ~ sex + age, data=mockstudy)
```
If you want to take a quick look at the table, you can use `summary` on your modelsum object and the table will
print out as text in your R console window. If you use `summary` without any options you will see a number of
$\ $ statements which translates to "space" in HTML.
## Pretty text version of table
If you want a nicer version in your console window then adding the `text=TRUE` option.
```{r simple-text}
summary(tab1, text=TRUE)
```
## Pretty Rmarkdown version of table
In order for the report to look nice within an R markdown (knitr) report, you just need to specify
`results="asis"` when creating the r chunk. This changes the layout slightly (compresses it) and bolds
the variable names.
```{r simple-markdown, results='asis'}
summary(tab1)
```
## Data frame version of table
If you want a data.frame version, simply use `as.data.frame`.
```{r}
as.data.frame(tab1)
```
## Add an adjustor to the model
The argument `adjust` allows the user to indicate that all the variables should be adjusted for these terms. To adjust each model
for age and sex (for instance), we use `adjust = ~ age + sex`:
```{r adjust, results="asis"}
tab2 <- modelsum(alk.phos ~ arm + ps + hgb, adjust= ~age + sex, data=mockstudy)
summary(tab2)
```
# Models for each endpoint type
To make sure the correct model is run you need to specify "family". The options available right
now are : gaussian, binomial, survival, and poisson. If there is enough interest, additional models can be added.
## Gaussian
### Fit and summarize linear regression model
Look at whether there is any evidence that AlkPhos values vary by study arm after adjusting for sex and age (assuming a linear age relationship).
```{r}
fit <- lm(alk.phos ~ arm + age + sex, data=mockstudy)
summary(fit)
plot(fit)
```
The results suggest that the endpoint may need to be transformed. Calculating the Box-Cox transformation suggests a log transformation.
```{r}
require(MASS)
boxcox(fit)
```
```{r}
fit2 <- lm(log(alk.phos) ~ arm + age + sex, data=mockstudy)
summary(fit2)
plot(fit2)
```
Finally, look to see whether there there is a non-linear relationship with age.
```{r}
require(splines)
fit3 <- lm(log(alk.phos) ~ arm + ns(age, df=2) + sex, data=mockstudy)
# test whether there is a difference between models
stats::anova(fit2,fit3)
# look at functional form of age
termplot(fit3, term=2, se=T, rug=T)
```
In this instance it looks like there isn't enough evidence to say that the relationship is non-linear.
### Extract data using the `broom` package
The `broom` package makes it easy to extract information from the fit.
```{r}
tmp <- tidy(fit3) # coefficients, p-values
class(tmp)
tmp
glance(fit3)
```
### Create a summary table using modelsum
```{r, results="asis"}
ms.logy <- modelsum(log(alk.phos) ~ arm + ps + hgb, data=mockstudy, adjust= ~age + sex,
family=gaussian,
gaussian.stats=c("estimate","CI.lower.estimate","CI.upper.estimate","p.value"))
summary(ms.logy)
```
## Binomial
### Fit and summarize logistic regression model
```{r}
boxplot(age ~ mdquality.s, data=mockstudy, ylab=attr(mockstudy$age,'label'), xlab='mdquality.s')
fit <- glm(mdquality.s ~ age + sex, data=mockstudy, family=binomial)
summary(fit)
# create Odd's ratio w/ confidence intervals
tmp <- data.frame(summary(fit)$coef)
tmp
tmp$OR <- round(exp(tmp[,1]),2)
tmp$lower.CI <- round(exp(tmp[,1] - 1.96* tmp[,2]),2)
tmp$upper.CI <- round(exp(tmp[,1] + 1.96* tmp[,2]),2)
names(tmp)[4] <- 'P-value'
kable(tmp[,c('OR','lower.CI','upper.CI','P-value')])
# Assess the predictive ability of the model
# code using the pROC package
require(pROC)
pred <- predict(fit, type='response')
tmp <- pROC::roc(mockstudy$mdquality.s[!is.na(mockstudy$mdquality.s)]~ pred, plot=TRUE, percent=TRUE)
tmp$auc
```
### Extract data using `broom` package
The `broom` package makes it easy to extract information from the fit.
```{r}
tidy(fit, exp=T, conf.int=T) # coefficients, p-values, conf.intervals
glance(fit) # model summary statistics
```
### Create a summary table using modelsum
```{r, results="asis"}
summary(modelsum(mdquality.s ~ age + bmi, data=mockstudy, adjust=~sex, family=binomial))
fitall <- modelsum(mdquality.s ~ age, data=mockstudy, family=binomial,
binomial.stats=c("Nmiss2","OR","p.value"))
summary(fitall)
```
## Survival
### Fit and summarize a Cox regression model
```{r survival}
require(survival)
# multivariable model with all 3 terms
fit <- coxph(Surv(fu.time, fu.stat) ~ age + sex + arm, data=mockstudy)
summary(fit)
# check proportional hazards assumption
fit.z <- cox.zph(fit)
fit.z
plot(fit.z[1], resid=FALSE) # makes for a cleaner picture in this case
abline(h=coef(fit)[1], col='red')
# check functional form for age using pspline (penalized spline)
# results are returned for the linear and non-linear components
fit2 <- coxph(Surv(fu.time, fu.stat) ~ pspline(age) + sex + arm, data=mockstudy)
fit2
# plot smoothed age to visualize why significant
termplot(fit2, se=T, terms=1)
abline(h=0)
# The c-statistic comes out in the summary of the fit
summary(fit2)$concordance
# It can also be calculated using the survConcordance function
survConcordance(Surv(fu.time, fu.stat) ~ predict(fit2), data=mockstudy)
```
### Extract data using `broom` package
The `broom` package makes it easy to extract information from the fit.
```{r}
tidy(fit) # coefficients, p-values
glance(fit) # model summary statistics
```
### Create a summary table using modelsum
```{r results="asis"}
##Note: You must use quotes when specifying family="survival"
## family=survival will not work
summary(modelsum(Surv(fu.time, fu.stat) ~ arm,
adjust=~age + sex, data=mockstudy, family="survival"))
##Note: the pspline term is not working yet
#summary(modelsum(Surv(fu.time, fu.stat) ~ arm,
# adjust=~pspline(age) + sex, data=mockstudy, family='survival'))
```
## Poisson
Poisson regression is useful when predicting an outcome variable representing counts.
It can also be useful when looking at survival data. Cox models and Poisson models are very closely
related and survival data can be summarized using Poisson regression. If you have overdispersion (see
if the residual deviance is much larger than degrees of freedom), you may want to use `quasipoisson()`
instead of `poisson()`. Some of these diagnostics need to be done outside of `modelsum`.
### Example 1: fit and summarize a Poisson regression model
For the first example, use the solder dataset available in the `rpart` package. The endpoint `skips` has a definite Poisson look.
```{r poisson}
require(rpart) ##just to get access to solder dataset
data(solder)
hist(solder$skips)
fit <- glm(skips ~ Opening + Solder + Mask , data=solder, family=poisson)
stats::anova(fit, test='Chi')
summary(fit)
```
Overdispersion is when the Residual deviance is larger than the degrees of freedom. This can be tested, approximately using the following code. The goal is to have a p-value that is $>0.05$.
```{r}
1-pchisq(fit$deviance, fit$df.residual)
```
One possible solution is to use the quasipoisson family instead of the poisson family. This adjusts for the overdispersion.
```{r}
fit2 <- glm(skips ~ Opening + Solder + Mask, data=solder, family=quasipoisson)
summary(fit2)
```
### Extract data using `broom` package
The `broom` package makes it easy to extract information from the fit.
```{r}
tidy(fit) # coefficients, p-values
glance(fit) # model summary statistics
```
### Create a summary table using modelsum
```{r results='asis'}
summary(modelsum(skips~Opening + Solder + Mask, data=solder, family="quasipoisson"))
summary(modelsum(skips~Opening + Solder + Mask, data=solder, family="poisson"))
```
### Example 2: fit and summarize a Poisson regression model
This second example uses the survival endpoint available in the `mockstudy` dataset. There is a close
relationship between survival and Poisson models, and often it is easier to fit the model using Poisson
regression, especially if you want to present absolute risk.
```{r}
# add .01 to the follow-up time (.01*1 day) in order to keep everyone in the analysis
fit <- glm(fu.stat ~ offset(log(fu.time+.01)) + age + sex + arm, data=mockstudy, family=poisson)
summary(fit)
1-pchisq(fit$deviance, fit$df.residual)
coef(coxph(Surv(fu.time,fu.stat) ~ age + sex + arm, data=mockstudy))
coef(fit)[-1]
# results from the Poisson model can then be described as risk ratios (similar to the hazard ratio)
exp(coef(fit)[-1])
# As before, we can model the dispersion which alters the standard error
fit2 <- glm(fu.stat ~ offset(log(fu.time+.01)) + age + sex + arm,
data=mockstudy, family=quasipoisson)
summary(fit2)
```
### Extract data using `broom` package
The `broom` package makes it easy to extract information from the fit.
```{r}
tidy(fit) ##coefficients, p-values
glance(fit) ##model summary statistics
```
### Create a summary table using `modelsum`
Remember that the result from `modelsum` is different from the `fit` above. The `modelsum`
summary shows the results for `age + offset(log(fu.time+.01))` then `sex + offset(log(fu.time+.01))`
instead of `age + sex + arm + offset(log(fu.time+.01))`.
```{r results="asis", eval=TRUE}
summary(modelsum(fu.stat ~ age, adjust=~offset(log(fu.time+.01))+ sex + arm,
data=mockstudy, family=poisson))
```
# Additional Examples
Here are multiple examples showing how to use some of the different options.
## 1. Change summary statistics globally
There are standard settings for each type of model regarding what information is summarized in the table.
This behavior can be modified using the modelsum.control function. In fact, you can save your standard
settings and use that for future tables.
```{r, results='asis'}
mycontrols <- modelsum.control(gaussian.stats=c("estimate","std.error","adj.r.squared","Nmiss"),
show.adjust=FALSE, show.intercept=FALSE)
tab2 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy, control=mycontrols)
summary(tab2)
```
You can also change these settings directly in the modelsum call.
```{r, results='asis'}
tab3 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy,
gaussian.stats=c("estimate","std.error","adj.r.squared","Nmiss"),
show.intercept=FALSE, show.adjust=FALSE)
summary(tab3)
```
## 2. Add labels to independent variables
In the above example, age is shown with a label (Age in Years), but sex is listed "as is".
This is because the data was created in SAS and in the SAS dataset, age had a label but sex did not.
The label is stored as an attribute within R.
```{r check-labels}
## Look at one variable's label
attr(mockstudy$age,'label')
## See all the variables with a label
unlist(lapply(mockstudy,'attr','label'))
## or
cbind(sapply(mockstudy,attr,'label'))
```
If you want to add labels to other variables, there are a couple of options. First, you could add labels to the variables in your dataset.
```{r add-label, results='asis'}
attr(mockstudy$age,'label') <- 'Age, yrs'
tab1 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy)
summary(tab1)
```
You can also use the built-in `data.frame` method for `labels<-`:
```{r, results = 'asis'}
labels(mockstudy) <- c(age = 'Age, yrs')
tab1 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy)
summary(tab1)
```
Another option is to add labels after you have created the table
```{r, results='asis'}
mylabels <- list(sexFemale = "Female", age ="Age, yrs")
summary(tab1, labelTranslations = mylabels)
```
Alternatively, you can check the variable labels and manipulate them with a function called `labels`, which works on the `modelsum` object.
```{r, eval=TRUE}
labels(tab1)
labels(tab1) <- c(sexFemale="Female", age="Baseline Age (yrs)")
labels(tab1)
```
```{r, results='asis'}
summary(tab1)
```
## 3. Don't show intercept values
```{r, results='asis'}
summary(modelsum(age~mdquality.s+sex, data=mockstudy), show.intercept=FALSE)
```
## 4. Don't show results for adjustment variables
```{r, results='asis'}
summary(modelsum(mdquality.s ~ age + bmi, data=mockstudy, adjust=~sex, family=binomial),
show.adjust=FALSE)
```
## 5. Summarize multiple variables without typing them out
Often one wants to summarize a number of variables. Instead of typing by hand each individual variable,
an alternative approach is to create a formula using the `paste` command with the `collapse="+"` option.
```{r, results='asis'}
# create a vector specifying the variable names
myvars <- names(mockstudy)
# select the 8th through the 12th
# paste them together, separated by the + sign
RHS <- paste(myvars[8:12], collapse="+")
RHS
# create a formula using the as.formula function
as.formula(paste('mdquality.s ~ ', RHS))
# use the formula in the modelsum function
summary(modelsum(as.formula(paste('mdquality.s ~', RHS)), family=binomial, data=mockstudy))
```
These steps can also be done using the `formulize` function.
```{r, results='asis'}
## The formulize function does the paste and as.formula steps
tmp <- formulize('mdquality.s',myvars[8:10])
tmp
## More complex formulas could also be written using formulize
tmp2 <- formulize('mdquality.s',c('ps','hgb','sqrt(bmi)'))
## use the formula in the modelsum function
summary(modelsum(tmp, data=mockstudy, family=binomial))
```
## 6. Subset the dataset used in the analysis
Here are two ways to get the same result (limit the analysis to subjects age>50 and in the F: FOLFOX treatment group).
* The first approach uses the subset function applied to the dataset `mockstudy`.
This example also selects a subset of variables. The `modelsum` function is then applied to this subsetted data.
```{r}
newdata <- subset(mockstudy, subset=age>50 & arm=='F: FOLFOX', select = c(age,sex, bmi:alk.phos))
dim(mockstudy)
table(mockstudy$arm)
dim(newdata)
names(newdata)
```
```{r, results='asis'}
summary(modelsum(alk.phos ~ ., data=newdata))
```
* The second approach does the same analysis but uses the subset
argument within `modelsum` to subset the data.
```{r, results='asis', eval=TRUE}
summary(modelsum(log(alk.phos) ~ sex + ps + bmi, subset=age>50 & arm=="F: FOLFOX", data=mockstudy))
summary(modelsum(alk.phos ~ ps + bmi, adjust=~sex, subset = age>50 & bmi<24, data=mockstudy))
summary(modelsum(alk.phos ~ ps + bmi, adjust=~sex, subset=1:30, data=mockstudy))
```
## 7. Create combinations of variables on the fly
```{r}
## create a variable combining the levels of mdquality.s and sex
with(mockstudy, table(interaction(mdquality.s,sex)))
```
```{r, results='asis'}
summary(modelsum(age ~ interaction(mdquality.s,sex), data=mockstudy))
```
## 8. Transform variables on the fly
Certain transformations need to be surrounded by `I()` so that R knows to treat it as a variable
transformation and not some special model feature. If the transformation includes any of the
symbols `/ - + ^ *` then surround the new variable by `I()`.
```{r, results='asis'}
summary(modelsum(arm=="F: FOLFOX" ~ I(age/10) + log(bmi) + mdquality.s,
data=mockstudy, family=binomial))
```
## 9. Change the ordering of the variables or delete a variable
```{r, results='asis'}
mytab <- modelsum(bmi ~ sex + alk.phos + age, data=mockstudy)
mytab2 <- mytab[c('age','sex','alk.phos')]
summary(mytab2)
summary(mytab[c('age','sex')])
summary(mytab[c(3,1)])
```
## 10. Merge two `modelsum` objects together
It is possible to merge two modelsum objects so that they print out together, however you need to pay
attention to the columns that are being displayed. It is sometimes easier to combine two models of the same
family (such as two sets of linear models). Overlapping y-variables will have their x-variables
concatenated, and (if `all=TRUE`) non-overlapping y-variables will have their tables printed separately.
```{r, results="asis"}
## demographics
tab1 <- modelsum(bmi ~ sex + age, data=mockstudy)
## lab data
tab2 <- modelsum(mdquality.s ~ hgb + alk.phos, data=mockstudy, family=binomial)
tab12 <- merge(tab1, tab2, all = TRUE)
class(tab12)
summary(tab12)
```
## 11. Add a title to the table
When creating a pdf the tables are automatically numbered and the title appears below the table.
In Word and HTML, the titles appear un-numbered and above the table.
```{r, results='asis'}
t1 <- modelsum(bmi ~ sex + age, data=mockstudy)
summary(t1, title='Demographics')
```
## 12. Modify how missing values are treated
Depending on the report you are writing you have the following options:
* Use all values available for each variable
* Use only those subjects who have measurements available for all the variables
```{r}
## look at how many missing values there are for each variable
apply(is.na(mockstudy),2,sum)
```
```{r, results='asis'}
## Show how many subjects have each variable (non-missing)
summary(modelsum(bmi ~ ast + age, data=mockstudy,
control=modelsum.control(gaussian.stats=c("N","estimate"))))
## Always list the number of missing values
summary(modelsum(bmi ~ ast + age, data=mockstudy,
control=modelsum.control(gaussian.stats=c("Nmiss2","estimate"))))
## Only show the missing values if there are some (default)
summary(modelsum(bmi ~ ast + age, data=mockstudy,
control=modelsum.control(gaussian.stats=c("Nmiss","estimate"))))
## Don't show N at all
summary(modelsum(bmi ~ ast + age, data=mockstudy,
control=modelsum.control(gaussian.stats=c("estimate"))))
```
## 13. Modify the number of digits used
Within modelsum.control function there are 3 options for controlling the number of significant digits shown.
* digits: controls the number of digits after the decimal point for continuous values
* digits.ratio: controls the number of digits after the decimal point for continuous values
* digits.p: controls the number of digits after the decimal point for continuous values
```{r, results='asis'}
summary(modelsum(bmi ~ sex + age + fu.time, data=mockstudy), digits=4, digits.test=2)
```
## 14. Use case-weights in the models
Occasionally it is of interest to fit models using case weights.
The `modelsum` function allows you to pass on the weights to the models and it will do the appropriate fit.
```{r}
mockstudy$agegp <- cut(mockstudy$age, breaks=c(18,50,60,70,90), right=FALSE)
## create weights based on agegp and sex distribution
tab1 <- with(mockstudy,table(agegp, sex))
tab1
tab2 <- with(mockstudy, table(agegp, sex, arm))
gpwts <- rep(tab1, length(unique(mockstudy$arm)))/tab2
## apply weights to subjects
index <- with(mockstudy, cbind(as.numeric(agegp), as.numeric(sex), as.numeric(as.factor(arm))))
mockstudy$wts <- gpwts[index]
## show weights by treatment arm group
tapply(mockstudy$wts,mockstudy$arm, summary)
```
```{r results='asis'}
mockstudy$newvarA <- as.numeric(mockstudy$arm=='A: IFL')
tab1 <- modelsum(newvarA ~ ast + bmi + hgb, data=mockstudy, subset=(arm !='G: IROX'),
family=binomial)
summary(tab1, title='No Case Weights used')
suppressWarnings({
tab2 <- modelsum(newvarA ~ ast + bmi + hgb, data=mockstudy, subset=(arm !='G: IROX'),
weights=wts, family=binomial)
summary(tab2, title='Case Weights used')
})
```
## 15. Use `modelsum` within an Sweave document
For those users who wish to create tables within an Sweave document, the following code seems to work.
```
\documentclass{article}
\usepackage{longtable}
\usepackage{pdfpages}
\begin{document}
\section{Read in Data}
<<echo=TRUE>>=
require(arsenal)
require(knitr)
require(rmarkdown)
data(mockstudy)
tab1 <- modelsum(bmi~sex+age, data=mockstudy)
@
\section{Convert Summary.modelsum to LaTeX}
<<echo=TRUE, results='hide', message=FALSE>>=
capture.output(summary(tab1), file="Test.md")
## Convert R Markdown Table to LaTeX
render("Test.md", pdf_document(keep_tex=TRUE))
@
\includepdf{Test.pdf}
\end{document}
```
## 16. Export `modelsum` results to a .CSV file
When looking at multiple variables it is sometimes useful to export the results to a csv file.
The `as.data.frame` function creates a data frame object that can be exported or further manipulated within R.
```{r}
summary(tab2, text=T)
tmp <- as.data.frame(summary(tab2, text = TRUE))
tmp
# write.csv(tmp, '/my/path/here/mymodel.csv')
```
## 17. Write `modelsum` object to a separate Word or HTML file
```{r eval = FALSE}
## write to an HTML document
write2html(tab2, "~/ibm/trash.html")
## write to a Word document
write2word(tab2, "~/ibm/trash.doc", title="My table in Word")
```
## 18. Use `modelsum` in R Shiny
The easiest way to output a `modelsum()` object in an R Shiny app is to use the `tableOutput()` UI in combination with
the `renderTable()` server function and `as.data.frame(summary(modelsum()))`:
```{r eval=FALSE}
# A standalone shiny app
library(shiny)
library(arsenal)
data(mockstudy)
shinyApp(
ui = fluidPage(tableOutput("table")),
server = function(input, output) {
output$table <- renderTable({
as.data.frame(summary(modelsum(age ~ sex, data = mockstudy), text = "html"))
}, sanitize.text.function = function(x) x)
}
)
```
This can be especially powerful if you feed the selections from a `selectInput(multiple = TRUE)` into `formulize()` to make
the table dynamic!
## 23. Use `modelsum` in bookdown
Since the backbone of `modelsum()` is `knitr::kable()`, tables still render well in bookdown. However, `print.summary.modelsum()` doesn't use
the `caption=` argument of `kable()`, so some tables may not have a properly numbered caption. To fix this, use the method described
[on the bookdown site](https://bookdown.org/yihui/bookdown/tables.html) to give the table a tag/ID.
```{r eval=FALSE}
summary(modelsum(age ~ sex, data = mockstudy), title="(\\#tab:mytableby) Caption here")
```
## 24. Model multiple endpoints
You can now use `list()` on the left-hand side of `modelsum()` to give multiple endpoints.
Note that only one "family" can be specified this way (use `merge()` instead if you want multiple families).
```{r results='asis'}
summary(modelsum(list(age, hgb) ~ bmi + sex, adjust = ~ arm, data = mockstudy))
```
To avoid confusion about which table is which endpoint, you can set `term.name=TRUE` in `summary()`. This takes the labels
for each endpoint and puts them in the top-left of the table.
```{r results='asis'}
summary(modelsum(list(age, hgb) ~ bmi + sex, adjust = ~ arm, data = mockstudy), term.name = TRUE)
```
## 25. Model data by a non-test group (strata)
You can also specify a grouping variable that doesn't get tested (but instead separates results): a *strata* variable.
```{r results='asis'}
summary(modelsum(list(age, hgb) ~ bmi + sex, strata = arm, data = mockstudy))
```
## 26. Add multiple sets of adjustors to the model
By putting multiple formulas into a list, you can use multiple sets of adjustors. Use `~ 1` or `NULL` for an "unadjusted" model. By using the
`adjustment.names=TRUE` argument and giving names to your adjustor sets in the list, you can name the various analyses.
```{r}
adj.list <- list(
Unadjusted = ~ 1, # can also specify NULL here
"Adjusted for Arm" = ~ arm
)
multi.adjust <- modelsum(list(age, bmi) ~ fu.time + ast, adjust = adj.list, data = mockstudy)
summary(multi.adjust, adjustment.names = TRUE)
summary(multi.adjust, adjustment.names = TRUE, show.intercept = FALSE, show.adjust = FALSE)
```
# Available Function Options
## Summary statistics
The available summary statistics, by varible type, are:
* `ordinal`: Ordinal logistic regression models
+ default: `Nmiss, OR, CI.lower.OR, CI.upper.OR, p.value`
+ optional: `estimate, CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate,`
`N, Nmiss2, endpoint, std.error, statistic, logLik, AIC, BIC, edf, deviance, df.residual, p.value.lrt`
* `binomial`,`quasibinomial`: Logistic regression models
+ default: `OR, CI.lower.OR, CI.upper.OR, p.value, concordance, Nmiss`
+ optional: `estimate, CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate,`
`CI.wald, CI.lower.wald, CI.upper.wald, CI.OR.wald, CI.lower.OR.wald, CI.upper.OR.wald,`
`N, Nmiss2, Nevents, endpoint, std.error, statistic, logLik, AIC, BIC, null.deviance, deviance, df.residual, df.null, p.value.lrt`
* `gaussian`: Linear regression models
+ default: `estimate, std.error, p.value, adj.r.squared, Nmiss`
+ optional: `CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, statistic,`
`standard.estimate, endpoint, r.squared, AIC, BIC, logLik, statistic.F, p.value.F, p.value.lrt`
* `poisson`, `quasipoisson`: Poisson regression models
+ default: `RR, CI.lower.RR, CI.upper.RR, p.value, Nmiss`
+ optional: `CI.RR, CI.estimate, CI.lower.estimate, CI.upper.estimate, CI.RR, Nmiss2, std.error,`
`estimate, statistic, endpoint, AIC, BIC, logLik, dispersion, null.deviance, deviance, df.residual, df.null, p.value.lrt`
* `negbin`: Negative binomial regression models
+ default: `RR, CI.lower.RR, CI.upper.RR, p.value, Nmiss`
+ optional: `CI.RR, CI.estimate, CI.lower.estimate, CI.upper.estimate, CI.RR, Nmiss2, std.error, estimate,`
`statistic, endpoint, AIC, BIC, logLik, dispersion, null.deviance, deviance, df.residual, df.null, theta, SE.theta, p.value.lrt`
* `clog`: Conditional Logistic models
+ default: `OR, CI.lower.OR, CI.upper.OR, p.value, concordance, Nmiss`
+ optional: `CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, estimate, std.error, endpoint, Nevents, statistic,`
`r.squared, r.squared.max, logLik, AIC, BIC, statistic.log, p.value.log, statistic.sc, p.value.sc,`
`statistic.wald, p.value.wald, N, std.error.concordance, p.value.lrt`
* `survival`: Cox models
+ default: `HR, CI.lower.HR, CI.upper.HR, p.value, concordance, Nmiss`
+ optional: `CI.HR, CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, estimate, std.error, endpoint,`
`Nevents, statistic, r.squared, r.squared.max, logLik, AIC, BIC, statistic.log, p.value.log, statistic.sc, p.value.sc,`
`statistic.wald, p.value.wald, N, std.error.concordance, p.value.lrt`
The full description of these parameters that can be shown for models include:
* `N`: a count of the number of observations used in the analysis
* `Nmiss`: only show the count of the number of missing values if there are some missing values
* `Nmiss2`: always show a count of the number of missing values for a model
* `endpoint`: dependent variable used in the model
* `std.err`: print the standard error
* `statistic`: test statistic
* `statistic.F`: test statistic (F test)
* `p.value`: print the p-value
* `p.value.lrt`: print the likelihood ratio p-value for *the main effect only* (not the adjustors)
* `r.squared`: print the model R-square
* `adj.r.squared`: print the model adjusted R-square
* `r.squared.max`: print the model R-square
* `concordance`: print the model C statistic (which is the AUC for logistic models)
* `logLik`: print the loglikelihood value
* `p.value.log`: print the p-value for the overall model likelihood test
* `p.value.wald`: print the p-value for the overall model wald test
* `p.value.sc`: print the p-value for overall model score test
* `AIC`: print the Akaike information criterion
* `BIC`: print the Bayesian information criterion
* `null.deviance`: null deviance
* `deviance`: model deviance
* `df.residual`: degrees of freedom for the residual
* `df.null`: degrees of freedom for the null model
* `dispersion`: This is used in Poisson models and is defined as the deviance/df.residual
* `statistic.sc`: overall model score statistic
* `statistic.wald`: overall model score statistic
* `statistic.log`: overall model score statistic
* `std.error.concordance`: standard error for the C statistic
* `HR`: print the hazard ratio (for survival models), i.e. exp(beta)
* `CI.lower.HR, CI.upper.HR`: print the confidence interval for the HR
* `OR`: print the odd's ratio (for logistic models), i.e. exp(beta)
* `CI.lower.OR, CI.upper.OR`: print the confidence interval for the OR
* `CI.lower.OR.wald, CI.upper.OR.wald`: print the Wald confidence interval for the OR
* `RR`: print the risk ratio (for poisson models), i.e. exp(beta)
* `CI.lower.RR, CI.upper.RR`: print the confidence interval for the RR
* `estimate`: print beta coefficient
* `standardized.estimate`: print the standardized beta coefficient
* `CI.lower.estimate, CI.upper.estimate`: print the confidence interval for the beta coefficient
* `CI.lower.wald, CI.upper.wald`: print the Wald confidence interval for the beta coefficient
* `edf`: print the effective degrees of freedom.
* `theta`: print the estimate of theta.
* `SE.theta`: print the estimate of theta's standard error.
## `modelsum.control` settings
A quick way to see what arguments are possible to utilize in a function is to use the `args()`
command. Settings involving the number of digits can be set in `modelsum.control` or in `summary.modelsum`.
```{r}
args(modelsum.control)
```
## `summary.modelsum` settings
The summary.modelsum function has options that modify how the table appears (such as adding a title or modifying labels).
```{r}
args(arsenal:::summary.modelsum)
```
|