File: modelsum.Rmd

package info (click to toggle)
r-cran-arsenal 3.6.3-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,788 kB
  • sloc: sh: 18; makefile: 5
file content (915 lines) | stat: -rw-r--r-- 32,164 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
---
title: "The modelsum function"
author: "Beth Atkinson, Ethan Heinzen, Pat Votruba, Jason Sinnwell, Shannon McDonnell and Greg Dougherty"
output:
  rmarkdown::html_vignette:
    toc: yes
    toc_depth: 3
vignette: |
  %\VignetteIndexEntry{The modelsum function}
  %\VignetteEncoding{UTF-8}
  %\VignetteEngine{knitr::rmarkdown}
---

```{r, echo=FALSE, message=FALSE, results='hide', warning=FALSE}
require(knitr)
require(broom)
require(MASS)
require(pROC)
require(rpart)
 
opts_chunk$set(comment = NA, echo=TRUE, prompt=TRUE, collapse=TRUE)

```


# Introduction

Very often we are asked to summarize model results from multiple fits into a nice table.
The endpoint might be of different types (e.g., survival, case/control, continuous) and there
may be several independent variables that we want to examine univariately or adjusted for certain
variables such as age and sex. Locally at Mayo, the SAS macros `%modelsum`, `%glmuniv`, and `%logisuni`
were written to create such summary tables. With the increasing interest in R, we have developed the
function `modelsum` to create similar tables within the R environment.  

In developing the `modelsum` function, the goal was to bring the best features of these macros into an R function.
However, the task was not simply to duplicate all the functionality, but rather to make use of R's strengths
(modeling, method dispersion, flexibility in function definition and output format) and make a tool that fits
the needs of R users.  Additionally, the results needed to fit within the general reproducible research framework
so the tables could be displayed within an R markdown report.

This report provides step-by-step directions for using the functions associated with `modelsum`.
All functions presented here are available within the `arsenal` package.  An assumption is made that users
are somewhat familiar with R markdown documents.  For those who are new to the topic, a good initial
resource is available at [rmarkdown.rstudio.com](https://rmarkdown.rstudio.com/). 

# Simple Example

The first step when using the `modelsum` function is to load the `arsenal` package.  All the examples in this report
use a dataset called `mockstudy` made available by Paul Novotny which includes a variety of types of variables
(character, numeric, factor, ordered factor, survival) to use as examples.

```{r, load-data}
require(arsenal)
data(mockstudy) # load data
dim(mockstudy)  # look at how many subjects and variables are in the dataset 
# help(mockstudy) # learn more about the dataset and variables
str(mockstudy) # quick look at the data
```

To create a simple linear regression table (the default), use a formula statement to specify the variables
that you want summarized.  The example below predicts BMI with the variables sex and age. 

```{r simple1}
tab1 <- modelsum(bmi ~ sex + age, data=mockstudy)
```

If you want to take a quick look at the table, you can use `summary` on your modelsum object and the table will
print out as text in your R console window.  If you use `summary` without any options you will see a number of
$\&nbsp;$ statements which translates to "space" in HTML.

## Pretty text version of table

If you want a nicer version in your console window then adding the `text=TRUE` option.  

```{r simple-text}
summary(tab1, text=TRUE)
```

## Pretty Rmarkdown version of table

In order for the report to look nice within an R markdown (knitr) report, you just need to specify
`results="asis"` when creating the r chunk. This changes the layout slightly (compresses it) and bolds
the variable names.

```{r simple-markdown, results='asis'}
summary(tab1)
```

## Data frame version of table

If you want a data.frame version, simply use `as.data.frame`.  

```{r}
as.data.frame(tab1)
```

## Add an adjustor to the model

The argument `adjust` allows the user to indicate that all the variables should be adjusted for these terms. To adjust each model
for age and sex (for instance), we use `adjust = ~ age + sex`:

```{r adjust, results="asis"}
tab2 <- modelsum(alk.phos ~ arm + ps + hgb, adjust= ~age + sex, data=mockstudy)
summary(tab2)
```

# Models for each endpoint type

To make sure the correct model is run you need to specify "family".  The options available right
now are : gaussian, binomial, survival, and poisson.  If there is enough interest, additional models can be added.  

## Gaussian

### Fit and summarize linear regression model

Look at whether there is any evidence that AlkPhos values vary by study arm after adjusting for sex and age (assuming a linear age relationship).

```{r}
fit <- lm(alk.phos ~ arm + age + sex, data=mockstudy)
summary(fit)
plot(fit)
```

The results suggest that the endpoint may need to be transformed.  Calculating the Box-Cox transformation suggests a log transformation.

```{r}
require(MASS)
boxcox(fit)
```

```{r}
fit2 <- lm(log(alk.phos) ~ arm + age + sex, data=mockstudy)
summary(fit2)
plot(fit2)
```

Finally, look to see whether there there is a non-linear relationship with age.

```{r}
require(splines)
fit3 <- lm(log(alk.phos) ~ arm + ns(age, df=2) + sex, data=mockstudy)

# test whether there is a difference between models 
stats::anova(fit2,fit3)

# look at functional form of age
termplot(fit3, term=2, se=T, rug=T)
```

In this instance it looks like there isn't enough evidence to say that the relationship is non-linear.

### Extract data using the `broom` package

The `broom` package makes it easy to extract information from the fit.

```{r}
tmp <- tidy(fit3) # coefficients, p-values
class(tmp)
tmp

glance(fit3)
```

### Create a summary table using modelsum

```{r, results="asis"}
ms.logy <- modelsum(log(alk.phos) ~ arm + ps + hgb, data=mockstudy, adjust= ~age + sex, 
                    family=gaussian,  
                    gaussian.stats=c("estimate","CI.lower.estimate","CI.upper.estimate","p.value"))
summary(ms.logy)
```

## Binomial

### Fit and summarize logistic regression model

```{r}
boxplot(age ~ mdquality.s, data=mockstudy, ylab=attr(mockstudy$age,'label'), xlab='mdquality.s')

fit <- glm(mdquality.s ~ age + sex, data=mockstudy, family=binomial)
summary(fit)

# create Odd's ratio w/ confidence intervals
tmp <- data.frame(summary(fit)$coef)
tmp

tmp$OR <- round(exp(tmp[,1]),2)
tmp$lower.CI <- round(exp(tmp[,1] - 1.96* tmp[,2]),2)
tmp$upper.CI <- round(exp(tmp[,1] + 1.96* tmp[,2]),2)
names(tmp)[4] <- 'P-value'

kable(tmp[,c('OR','lower.CI','upper.CI','P-value')])

# Assess the predictive ability of the model

# code using the pROC package
require(pROC)
pred <- predict(fit, type='response')
tmp <- pROC::roc(mockstudy$mdquality.s[!is.na(mockstudy$mdquality.s)]~ pred, plot=TRUE, percent=TRUE)
tmp$auc

```

### Extract data using `broom` package

The `broom` package makes it easy to extract information from the fit.

```{r}
tidy(fit, exp=T, conf.int=T) # coefficients, p-values, conf.intervals

glance(fit) # model summary statistics
```

### Create a summary table using modelsum

```{r, results="asis"}
summary(modelsum(mdquality.s ~ age + bmi, data=mockstudy, adjust=~sex, family=binomial))

fitall <- modelsum(mdquality.s ~ age, data=mockstudy, family=binomial,
                   binomial.stats=c("Nmiss2","OR","p.value"))
summary(fitall)
```


## Survival

### Fit and summarize a Cox regression model 

```{r survival}
require(survival)

# multivariable model with all 3 terms
fit  <- coxph(Surv(fu.time, fu.stat) ~ age + sex + arm, data=mockstudy)
summary(fit)

# check proportional hazards assumption
fit.z <- cox.zph(fit)
fit.z
plot(fit.z[1], resid=FALSE) # makes for a cleaner picture in this case
abline(h=coef(fit)[1], col='red')

# check functional form for age using pspline (penalized spline)
# results are returned for the linear and non-linear components
fit2 <- coxph(Surv(fu.time, fu.stat) ~ pspline(age) + sex + arm, data=mockstudy)
fit2

# plot smoothed age to visualize why significant
termplot(fit2, se=T, terms=1)
abline(h=0)

# The c-statistic comes out in the summary of the fit
summary(fit2)$concordance

# It can also be calculated using the survConcordance function
survConcordance(Surv(fu.time, fu.stat) ~ predict(fit2), data=mockstudy)
```

### Extract data using `broom` package

The `broom` package makes it easy to extract information from the fit.

```{r}
tidy(fit) # coefficients, p-values

glance(fit) # model summary statistics
```

### Create a summary table using modelsum

```{r results="asis"}
##Note: You must use quotes when specifying family="survival" 
##      family=survival will not work
summary(modelsum(Surv(fu.time, fu.stat) ~ arm, 
                 adjust=~age + sex, data=mockstudy, family="survival"))

##Note: the pspline term is not working yet
#summary(modelsum(Surv(fu.time, fu.stat) ~ arm, 
#                adjust=~pspline(age) + sex, data=mockstudy, family='survival'))
```


## Poisson

Poisson regression is useful when predicting an outcome variable representing counts.
It can also be useful when looking at survival data.  Cox models and Poisson models are very closely
related and survival data can be summarized using Poisson regression. If you have overdispersion (see
if the residual deviance is much larger than degrees of freedom), you may want to use `quasipoisson()`
instead of `poisson()`.  Some of these diagnostics need to be done outside of `modelsum`. 

### Example 1: fit and summarize a Poisson regression model 

For the first example, use the solder dataset available in the `rpart` package.  The endpoint `skips` has a definite Poisson look.

```{r poisson}
require(rpart) ##just to get access to solder dataset
data(solder)
hist(solder$skips)

fit <- glm(skips ~ Opening + Solder + Mask , data=solder, family=poisson)
stats::anova(fit, test='Chi')
summary(fit)
```

Overdispersion is when the Residual deviance is larger than the degrees of freedom.  This can be tested, approximately using the following code.  The goal is to have a p-value that is $>0.05$.

```{r}
1-pchisq(fit$deviance, fit$df.residual)
```

One possible solution is to use the quasipoisson family instead of the poisson family.  This adjusts for the overdispersion.

```{r}
fit2 <- glm(skips ~ Opening + Solder + Mask, data=solder, family=quasipoisson)
summary(fit2)
```

### Extract data using `broom` package

The `broom` package makes it easy to extract information from the fit.

```{r}
tidy(fit) # coefficients, p-values

glance(fit) # model summary statistics
```


### Create a summary table using modelsum

```{r results='asis'}
summary(modelsum(skips~Opening + Solder + Mask, data=solder, family="quasipoisson"))
summary(modelsum(skips~Opening + Solder + Mask, data=solder, family="poisson"))
```

### Example 2: fit and summarize a Poisson regression model 

This second example uses the survival endpoint available in the `mockstudy` dataset.  There is a close
relationship between survival and Poisson models, and often it is easier to fit the model using Poisson
regression, especially if you want to present absolute risk.

```{r}
# add .01 to the follow-up time (.01*1 day) in order to keep everyone in the analysis
fit <- glm(fu.stat ~ offset(log(fu.time+.01)) + age + sex + arm, data=mockstudy, family=poisson)
summary(fit)
1-pchisq(fit$deviance, fit$df.residual)

coef(coxph(Surv(fu.time,fu.stat) ~ age + sex + arm, data=mockstudy))
coef(fit)[-1]

# results from the Poisson model can then be described as risk ratios (similar to the hazard ratio)
exp(coef(fit)[-1])

# As before, we can model the dispersion which alters the standard error
fit2 <- glm(fu.stat ~ offset(log(fu.time+.01)) + age + sex + arm, 
            data=mockstudy, family=quasipoisson)
summary(fit2)
```

### Extract data using `broom` package

The `broom` package makes it easy to extract information from the fit.

```{r}
tidy(fit) ##coefficients, p-values

glance(fit) ##model summary statistics
```


### Create a summary table using `modelsum`

Remember that the result from `modelsum` is different from the `fit` above.  The `modelsum`
summary shows the results for `age + offset(log(fu.time+.01))` then `sex + offset(log(fu.time+.01))`
instead of `age + sex + arm + offset(log(fu.time+.01))`.

```{r results="asis", eval=TRUE}
summary(modelsum(fu.stat ~ age, adjust=~offset(log(fu.time+.01))+ sex + arm, 
                 data=mockstudy, family=poisson))
                 
```


# Additional Examples


Here are multiple examples showing how to use some of the different options.

## 1. Change summary statistics globally

There are standard settings for each type of model regarding what information is summarized in the table.
This behavior can be modified using the modelsum.control function. In fact, you can save your standard
settings and use that for future tables.  


```{r, results='asis'}
mycontrols  <- modelsum.control(gaussian.stats=c("estimate","std.error","adj.r.squared","Nmiss"),
                                show.adjust=FALSE, show.intercept=FALSE)                            
tab2 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy, control=mycontrols)
summary(tab2)
```

You can also change these settings directly in the modelsum call.  

```{r, results='asis'}
tab3 <- modelsum(bmi ~  age, adjust=~sex, data=mockstudy,
                 gaussian.stats=c("estimate","std.error","adj.r.squared","Nmiss"), 
                 show.intercept=FALSE, show.adjust=FALSE)
summary(tab3)
```

## 2. Add labels to independent variables

In the above example, age is shown with a label (Age in Years), but sex is listed "as is".
This is because the data was created in SAS and in the SAS dataset, age had a label but sex did not.
The label is stored as an attribute within R.

```{r check-labels}
## Look at one variable's label
attr(mockstudy$age,'label')

## See all the variables with a label
unlist(lapply(mockstudy,'attr','label'))

## or
cbind(sapply(mockstudy,attr,'label'))
```

If you want to add labels to other variables, there are a couple of options.  First, you could add labels to the variables in your dataset.

```{r add-label, results='asis'}
attr(mockstudy$age,'label')  <- 'Age, yrs'

tab1 <- modelsum(bmi ~  age, adjust=~sex, data=mockstudy)
summary(tab1)
```

You can also use the built-in `data.frame` method for `labels<-`:

```{r, results = 'asis'}
labels(mockstudy)  <- c(age = 'Age, yrs')

tab1 <- modelsum(bmi ~  age, adjust=~sex, data=mockstudy)
summary(tab1)
```

Another option is to add labels after you have created the table

```{r, results='asis'}
mylabels <- list(sexFemale = "Female", age ="Age, yrs")
summary(tab1, labelTranslations = mylabels)
```

Alternatively, you can check the variable labels and manipulate them with a function called `labels`, which works on the `modelsum` object.

```{r, eval=TRUE}
labels(tab1)
labels(tab1) <- c(sexFemale="Female", age="Baseline Age (yrs)")
labels(tab1)
```

```{r, results='asis'}
summary(tab1)
```

## 3. Don't show intercept values

```{r, results='asis'}
summary(modelsum(age~mdquality.s+sex, data=mockstudy), show.intercept=FALSE)
```

## 4. Don't show results for adjustment variables

```{r, results='asis'}
summary(modelsum(mdquality.s ~ age + bmi, data=mockstudy, adjust=~sex, family=binomial),
        show.adjust=FALSE)  
```

## 5. Summarize multiple variables without typing them out

Often one wants to summarize a number of variables.  Instead of typing by hand each individual variable,
an alternative approach is to create a formula using the `paste` command with the `collapse="+"` option.  

```{r, results='asis'}
# create a vector specifying the variable names
myvars <- names(mockstudy)

# select the 8th through the 12th
# paste them together, separated by the + sign
RHS <- paste(myvars[8:12], collapse="+")
RHS

# create a formula using the as.formula function
as.formula(paste('mdquality.s ~ ', RHS))

# use the formula in the modelsum function
summary(modelsum(as.formula(paste('mdquality.s ~', RHS)), family=binomial, data=mockstudy))
```

These steps can also be done using the `formulize` function.

```{r, results='asis'}
## The formulize function does the paste and as.formula steps
tmp <- formulize('mdquality.s',myvars[8:10])
tmp

## More complex formulas could also be written using formulize
tmp2 <- formulize('mdquality.s',c('ps','hgb','sqrt(bmi)'))

## use the formula in the modelsum function
summary(modelsum(tmp, data=mockstudy, family=binomial))
```


## 6. Subset the dataset used in the analysis

Here are two ways to get the same result (limit the analysis to subjects age>50 and in the F: FOLFOX treatment group). 

* The first approach uses the subset function applied to the dataset `mockstudy`.
This example also selects a subset of variables.  The `modelsum` function is then applied to this subsetted data.


```{r}
newdata <- subset(mockstudy, subset=age>50 & arm=='F: FOLFOX', select = c(age,sex, bmi:alk.phos))
dim(mockstudy)
table(mockstudy$arm)
dim(newdata)
names(newdata)
```

```{r, results='asis'}
summary(modelsum(alk.phos ~ ., data=newdata))
```

* The second approach does the same analysis but uses the subset
argument within `modelsum` to subset the data.

```{r, results='asis', eval=TRUE}
summary(modelsum(log(alk.phos) ~ sex + ps + bmi, subset=age>50 & arm=="F: FOLFOX", data=mockstudy))
summary(modelsum(alk.phos ~ ps + bmi, adjust=~sex, subset = age>50 & bmi<24, data=mockstudy))
summary(modelsum(alk.phos ~ ps + bmi, adjust=~sex, subset=1:30, data=mockstudy))
```

## 7. Create combinations of variables on the fly

```{r}
## create a variable combining the levels of mdquality.s and sex
with(mockstudy, table(interaction(mdquality.s,sex)))
```

```{r, results='asis'}
summary(modelsum(age ~ interaction(mdquality.s,sex), data=mockstudy))
```

## 8. Transform variables on the fly

Certain transformations need to be surrounded by `I()` so that R knows to treat it as a variable
transformation and not some special model feature.  If the transformation includes any of the
symbols `/ - + ^ *` then surround the new variable by `I()`.


```{r, results='asis'}
summary(modelsum(arm=="F: FOLFOX" ~ I(age/10) + log(bmi) + mdquality.s,
                 data=mockstudy, family=binomial))
```


## 9. Change the ordering of the variables or delete a variable

```{r, results='asis'}
mytab <- modelsum(bmi ~ sex + alk.phos + age, data=mockstudy)
mytab2 <- mytab[c('age','sex','alk.phos')]
summary(mytab2)
summary(mytab[c('age','sex')])
summary(mytab[c(3,1)])
```

## 10. Merge two `modelsum` objects together 

It is possible to merge two modelsum objects so that they print out together, however you need to pay
attention to the columns that are being displayed.  It is sometimes easier to combine two models of the same
family (such as two sets of linear models). Overlapping y-variables will have their x-variables
concatenated, and (if `all=TRUE`) non-overlapping y-variables will have their tables printed separately.

```{r, results="asis"}
## demographics
tab1 <- modelsum(bmi ~ sex + age, data=mockstudy)
## lab data
tab2 <- modelsum(mdquality.s ~ hgb + alk.phos, data=mockstudy, family=binomial)
                
tab12 <- merge(tab1, tab2, all = TRUE)
class(tab12)
summary(tab12)
```

## 11. Add a title to the table

When creating a pdf the tables are automatically numbered and the title appears below the table.
In Word and HTML, the titles appear un-numbered and above the table.  

```{r, results='asis'}
t1 <- modelsum(bmi ~ sex + age, data=mockstudy)
summary(t1, title='Demographics')
```

## 12. Modify how missing values are treated

Depending on the report you are writing you have the following options: 

* Use all values available for each variable

* Use only those subjects who have measurements available for all the variables

```{r}
## look at how many missing values there are for each variable
apply(is.na(mockstudy),2,sum)
```

```{r, results='asis'}
## Show how many subjects have each variable (non-missing)
summary(modelsum(bmi ~ ast + age, data=mockstudy,
                control=modelsum.control(gaussian.stats=c("N","estimate"))))

## Always list the number of missing values
summary(modelsum(bmi ~ ast + age, data=mockstudy,
                control=modelsum.control(gaussian.stats=c("Nmiss2","estimate"))))

## Only show the missing values if there are some (default)
summary(modelsum(bmi ~ ast + age, data=mockstudy, 
                control=modelsum.control(gaussian.stats=c("Nmiss","estimate"))))

## Don't show N at all
summary(modelsum(bmi ~ ast + age, data=mockstudy, 
                control=modelsum.control(gaussian.stats=c("estimate"))))
```

## 13. Modify the number of digits used

Within modelsum.control function there are 3 options for controlling the number of significant digits shown.  

* digits: controls the number of digits after the decimal point for continuous values

* digits.ratio: controls the number of digits after the decimal point for continuous values

* digits.p: controls the number of digits after the decimal point for continuous values

```{r, results='asis'}
summary(modelsum(bmi ~ sex + age + fu.time, data=mockstudy), digits=4, digits.test=2)
```

## 14. Use case-weights in the models

Occasionally it is of interest to fit models using case weights.
The `modelsum` function allows you to pass on the weights to the models and it will do the appropriate fit.

```{r}
mockstudy$agegp <- cut(mockstudy$age, breaks=c(18,50,60,70,90), right=FALSE)

## create weights based on agegp and sex distribution
tab1 <- with(mockstudy,table(agegp, sex))
tab1
tab2 <- with(mockstudy, table(agegp, sex, arm))
gpwts <- rep(tab1, length(unique(mockstudy$arm)))/tab2

## apply weights to subjects
index <- with(mockstudy, cbind(as.numeric(agegp), as.numeric(sex), as.numeric(as.factor(arm)))) 
mockstudy$wts <- gpwts[index]

## show weights by treatment arm group
tapply(mockstudy$wts,mockstudy$arm, summary)
```

```{r results='asis'}
mockstudy$newvarA <- as.numeric(mockstudy$arm=='A: IFL')
tab1 <- modelsum(newvarA ~ ast + bmi + hgb, data=mockstudy, subset=(arm !='G: IROX'), 
                 family=binomial)
summary(tab1, title='No Case Weights used')

suppressWarnings({
tab2 <- modelsum(newvarA ~ ast + bmi + hgb, data=mockstudy, subset=(arm !='G: IROX'), 
                 weights=wts, family=binomial)
summary(tab2, title='Case Weights used')
})
```
          
## 15. Use `modelsum` within an Sweave document

For those users who wish to create tables within an Sweave document, the following code seems to work.

```
\documentclass{article}

\usepackage{longtable}
\usepackage{pdfpages}

\begin{document}

\section{Read in Data}
<<echo=TRUE>>=
require(arsenal)
require(knitr)
require(rmarkdown)
data(mockstudy)

tab1 <- modelsum(bmi~sex+age, data=mockstudy)
@

\section{Convert Summary.modelsum to LaTeX}
<<echo=TRUE, results='hide', message=FALSE>>=
capture.output(summary(tab1), file="Test.md")

## Convert R Markdown Table to LaTeX
render("Test.md", pdf_document(keep_tex=TRUE))
@ 

\includepdf{Test.pdf}

\end{document}
```
## 16. Export `modelsum` results to a .CSV file

When looking at multiple variables it is sometimes useful to export the results to a csv file.
The `as.data.frame` function creates a data frame object that can be exported or further manipulated within R.


```{r}
summary(tab2, text=T)
tmp <- as.data.frame(summary(tab2, text = TRUE))
tmp
# write.csv(tmp, '/my/path/here/mymodel.csv')
```

## 17. Write `modelsum` object to a separate Word or HTML file

```{r eval = FALSE}
## write to an HTML document
write2html(tab2, "~/ibm/trash.html")

## write to a Word document
write2word(tab2, "~/ibm/trash.doc", title="My table in Word")
```

## 18. Use `modelsum` in R Shiny

The easiest way to output a `modelsum()` object in an R Shiny app is to use the `tableOutput()` UI in combination with
the `renderTable()` server function and `as.data.frame(summary(modelsum()))`:

```{r eval=FALSE}
# A standalone shiny app
library(shiny)
library(arsenal)
data(mockstudy)

shinyApp(
  ui = fluidPage(tableOutput("table")),
  server = function(input, output) {
    output$table <- renderTable({
      as.data.frame(summary(modelsum(age ~ sex, data = mockstudy), text = "html"))
    }, sanitize.text.function = function(x) x)
  }
)
```

This can be especially powerful if you feed the selections from a `selectInput(multiple = TRUE)` into `formulize()` to make
the table dynamic!

## 23. Use `modelsum` in bookdown

Since the backbone of `modelsum()` is `knitr::kable()`, tables still render well in bookdown. However, `print.summary.modelsum()` doesn't use
the `caption=` argument of `kable()`, so some tables may not have a properly numbered caption. To fix this, use the method described
[on the bookdown site](https://bookdown.org/yihui/bookdown/tables.html) to give the table a tag/ID.

```{r eval=FALSE}
summary(modelsum(age ~ sex, data = mockstudy), title="(\\#tab:mytableby) Caption here")
```

## 24. Model multiple endpoints

You can now use `list()` on the left-hand side of `modelsum()` to give multiple endpoints.
Note that only one "family" can be specified this way (use `merge()` instead if you want multiple families).

```{r results='asis'}
summary(modelsum(list(age, hgb) ~ bmi + sex, adjust = ~ arm, data = mockstudy))
```

To avoid confusion about which table is which endpoint, you can set `term.name=TRUE` in `summary()`. This takes the labels
for each endpoint and puts them in the top-left of the table.

```{r results='asis'}
summary(modelsum(list(age, hgb) ~ bmi + sex, adjust = ~ arm, data = mockstudy), term.name = TRUE)
```

## 25. Model data by a non-test group (strata)

You can also specify a grouping variable that doesn't get tested (but instead separates results): a *strata* variable.

```{r results='asis'}
summary(modelsum(list(age, hgb) ~ bmi + sex, strata = arm, data = mockstudy))
```

## 26. Add multiple sets of adjustors to the model

By putting multiple formulas into a list, you can use multiple sets of adjustors. Use `~ 1` or `NULL` for an "unadjusted" model. By using the 
`adjustment.names=TRUE` argument and giving names to your adjustor sets in the list, you can name the various analyses.

```{r}
adj.list <- list(
  Unadjusted = ~ 1, # can also specify NULL here
  "Adjusted for Arm" = ~ arm
)
multi.adjust <- modelsum(list(age, bmi) ~ fu.time + ast, adjust = adj.list, data = mockstudy)
summary(multi.adjust, adjustment.names = TRUE)
summary(multi.adjust, adjustment.names = TRUE, show.intercept = FALSE, show.adjust = FALSE)
```


# Available Function Options

## Summary statistics

The available summary statistics, by varible type, are:

* `ordinal`: Ordinal logistic regression models
  + default: `Nmiss, OR, CI.lower.OR, CI.upper.OR, p.value`
  + optional: `estimate, CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate,`
       `N, Nmiss2, endpoint, std.error, statistic, logLik, AIC, BIC, edf, deviance, df.residual, p.value.lrt`
* `binomial`,`quasibinomial`: Logistic regression models 
  +  default:  `OR, CI.lower.OR, CI.upper.OR, p.value, concordance, Nmiss`
  +  optional: `estimate, CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate,`
        `CI.wald, CI.lower.wald, CI.upper.wald, CI.OR.wald, CI.lower.OR.wald, CI.upper.OR.wald,`
        `N, Nmiss2, Nevents, endpoint, std.error, statistic, logLik, AIC, BIC, null.deviance, deviance, df.residual, df.null, p.value.lrt`
* `gaussian`: Linear regression models 
  +  default:  `estimate, std.error, p.value, adj.r.squared, Nmiss`
  +  optional: `CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, statistic,`
        `standard.estimate, endpoint, r.squared, AIC, BIC, logLik, statistic.F, p.value.F, p.value.lrt`
* `poisson`, `quasipoisson`: Poisson regression models 
  +  default: `RR, CI.lower.RR, CI.upper.RR, p.value, Nmiss`
  +  optional: `CI.RR, CI.estimate, CI.lower.estimate, CI.upper.estimate, CI.RR, Nmiss2, std.error,`
        `estimate, statistic, endpoint, AIC, BIC, logLik, dispersion, null.deviance, deviance, df.residual, df.null, p.value.lrt`
* `negbin`: Negative binomial regression models 
  +  default: `RR, CI.lower.RR, CI.upper.RR, p.value, Nmiss`
  +  optional: `CI.RR, CI.estimate, CI.lower.estimate, CI.upper.estimate, CI.RR, Nmiss2, std.error, estimate,`
        `statistic, endpoint, AIC, BIC, logLik, dispersion, null.deviance, deviance, df.residual, df.null, theta, SE.theta, p.value.lrt`
* `clog`: Conditional Logistic models
  + default: `OR, CI.lower.OR, CI.upper.OR, p.value, concordance, Nmiss`
  + optional: `CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, estimate, std.error, endpoint, Nevents, statistic,`
        `r.squared, r.squared.max, logLik, AIC, BIC, statistic.log, p.value.log, statistic.sc, p.value.sc,`
        `statistic.wald, p.value.wald, N, std.error.concordance, p.value.lrt`
* `survival`: Cox models
  +  default: `HR, CI.lower.HR, CI.upper.HR, p.value, concordance, Nmiss`
  +  optional: `CI.HR, CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, estimate, std.error, endpoint,`
        `Nevents, statistic, r.squared, r.squared.max, logLik, AIC, BIC, statistic.log, p.value.log, statistic.sc, p.value.sc,`
        `statistic.wald, p.value.wald, N, std.error.concordance, p.value.lrt`

The full description of these parameters that can be shown for models include:

* `N`: a count of the number of observations used in the analysis
* `Nmiss`: only show the count of the number of missing values if there are some missing values 
* `Nmiss2`: always show a count of the number of missing values for a model 
* `endpoint`: dependent variable used in the model
* `std.err`: print the standard error
* `statistic`: test statistic
* `statistic.F`: test statistic (F test)
* `p.value`: print the p-value
* `p.value.lrt`: print the likelihood ratio p-value for *the main effect only* (not the adjustors)
* `r.squared`: print the model R-square 
* `adj.r.squared`: print the model adjusted R-square 
* `r.squared.max`: print the model R-square
* `concordance`: print the model C statistic (which is the AUC for logistic models)
* `logLik`: print the loglikelihood value
* `p.value.log`: print the p-value for the overall model likelihood test
* `p.value.wald`: print the p-value for the overall model wald test
* `p.value.sc`: print the p-value for overall model score test
* `AIC`: print the Akaike information criterion
* `BIC`: print the Bayesian information criterion
* `null.deviance`: null deviance
* `deviance`: model deviance
* `df.residual`: degrees of freedom for the residual
* `df.null`: degrees of freedom for the null model
* `dispersion`: This is used in Poisson models and is defined as the deviance/df.residual
* `statistic.sc`: overall model score statistic
* `statistic.wald`: overall model score statistic
* `statistic.log`: overall model score statistic
* `std.error.concordance`: standard error for the C statistic
* `HR`: print the hazard ratio (for survival models), i.e. exp(beta)
* `CI.lower.HR, CI.upper.HR`: print the confidence interval for the HR 
* `OR`: print the odd's ratio (for logistic models), i.e. exp(beta)
* `CI.lower.OR, CI.upper.OR`: print the confidence interval for the OR
* `CI.lower.OR.wald, CI.upper.OR.wald`: print the Wald confidence interval for the OR
* `RR`: print the risk ratio (for poisson models), i.e. exp(beta)
* `CI.lower.RR, CI.upper.RR`: print the confidence interval for the RR
* `estimate`: print beta coefficient
* `standardized.estimate`: print the standardized beta coefficient 
* `CI.lower.estimate, CI.upper.estimate`: print the confidence interval for the beta coefficient
* `CI.lower.wald, CI.upper.wald`: print the Wald confidence interval for the beta coefficient
* `edf`: print the effective degrees of freedom.
* `theta`: print the estimate of theta.
* `SE.theta`: print the estimate of theta's standard error.

## `modelsum.control` settings

A quick way to see what arguments are possible to utilize in a function is to use the `args()`
command. Settings involving the number of digits can be set in `modelsum.control` or in `summary.modelsum`.

```{r}
args(modelsum.control)
```

## `summary.modelsum` settings

The summary.modelsum function has options that modify how the table appears (such as adding a title or modifying labels).  

```{r}
args(arsenal:::summary.modelsum)
```