1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/aaClasses.R, R/methods-BFBayesFactorList.R
\docType{class}
\name{BFBayesFactorList-class}
\alias{BFBayesFactorList-class}
\alias{t,BFBayesFactorList-method}
\alias{/,numeric,BFBayesFactorList-method}
\alias{[,BFBayesFactorList,index,index,missing-method}
\alias{[,BFBayesFactorList,index,missing,missing-method}
\alias{[,BFBayesFactorList,missing,index,missing-method}
\title{General S4 class for representing a collection of Bayes factor model
comprisons, each against a different denominator}
\usage{
\S4method{t}{BFBayesFactorList}(x)
\S4method{/}{numeric,BFBayesFactorList}(e1, e2)
\S4method{[}{BFBayesFactorList,index,index,missing}(x, i, j, ..., drop = TRUE)
\S4method{[}{BFBayesFactorList,index,missing,missing}(x, i, j, ..., drop = TRUE)
\S4method{[}{BFBayesFactorList,missing,index,missing}(x, i, j, ..., drop = TRUE)
}
\arguments{
\item{x}{a BFBayesFactorList object}
\item{e1}{Numerator of the ratio}
\item{e2}{Denominator of the ratio}
\item{i}{indices specifying rows to extract}
\item{j}{indices specifying columns to extract}
\item{...}{further arguments passed to related methods}
\item{drop}{unused}
}
\description{
The \code{BFBayesFactorList} class is a general S4 class for representing
models model comparison via Bayes factor. See the examples for demonstrations
of BFBayesFactorList methods.
}
\details{
\describe{ \code{BFBayesFactorList} objects inherit from lists, and contain a
single slot:
\item{version}{character string giving the version and revision number of the
package that the model was created in}
Each element of the list contains a single
\code{"\link[=BFBayesFactor-class]{BFBayesFactor}"} object. Each element of
the list must have the same numerators, in the same order, as all the others.
The list object is displayed as a matrix of Bayes factors. }
}
\examples{
## Compute some Bayes factors to demonstrate Bayes factor lists
data(puzzles)
bfs <- anovaBF(RT ~ shape*color + ID, data = puzzles, whichRandom = "ID", progress=FALSE)
## Create a matrix of Bayes factors
bfList <- bfs / bfs
bfList
## Use indexing to select parts of the 'matrix'
bfList[1,]
bfList[,1]
## We can use the t (transpose) function as well, to get back a BFBayesFactor
t(bfList[2,])
## Or transpose the whole matrix
t(bfList)
}
|