1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/BayesFactorPCL-package.R
\docType{package}
\name{BayesFactor-package}
\alias{BayesFactor-package}
\alias{BayesFactor}
\title{Functions to compute Bayes factor hypothesis tests for common research designs
and hypotheses.}
\description{
This package contains function to compute Bayes factors for a number of
research designs and hypotheses, including t tests, ANOVA, and linear
regression, correlations, proportions, and contingency tables.
}
\details{
\tabular{ll}{ Package: \tab BayesFactor\cr Type: \tab Package\cr Version: \tab
0.9.12-4.4\cr Date: \tab 2021-07-04\cr License: \tab GPL 2.0\cr LazyLoad: \tab
yes\cr } The following methods are currently implemented, with more to follow:
general linear models (including linear mixed effects models): \code{\link{generalTestBF}}, \code{\link{lmBF}}
linear regression: \code{\link{regressionBF}}, \code{\link{lmBF}},
\code{\link{linearReg.R2stat}};
linear correlation: \code{\link{correlationBF}};
t tests: \code{\link{ttestBF}}, \code{\link{ttest.tstat}};
meta-analytic t tests: \code{\link{meta.ttestBF}}
ANOVA: \code{\link{anovaBF}}, \code{\link{lmBF}}, \code{\link{oneWayAOV.Fstat}};
contingency tables: \code{\link{contingencyTableBF}};
single proportions: \code{\link{proportionBF}};
linear correlations: \code{\link{correlationBF}};
Other useful functions: \code{\link{posterior}}, for sampling from posterior
distributions; \code{\link{recompute}}, for re-estimating a Bayes factor or
posterior distribution; \code{\link{compare}}, to compare two model
posteriors; and \code{\link{plot.BFBayesFactor}}, for plotting Bayes factor
objects.
}
\examples{
## See specific functions for examples.
}
\references{
Liang, F. and Paulo, R. and Molina, G. and Clyde, M. A. and
Berger, J. O. (2008). Mixtures of g-priors for Bayesian Variable Selection.
Journal of the American Statistical Association, 103, pp. 410-423
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., and Iverson, G.
(2009). Bayesian t-tests for accepting and rejecting the null hypothesis.
Psychonomic Bulletin & Review, 16, 225-237
Rouder, J. N., Morey, R. D., Speckman, P. L., Province, J. M., (2012)
Default Bayes Factors for ANOVA Designs. Journal of Mathematical Psychology.
56. p. 356-374.
}
\author{
Richard D. Morey and Jeffrey N. Rouder (with contributions from Tahira Jamil)
Maintainer: Richard D. Morey <richarddmorey@gmail.com>
}
\keyword{htest}
|