1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
setMethod('show', signature = c("BFmcmc"),
function(object){
show(S3Part(object))
show(object@model)
}
)
setAs("BFmcmc" , "mcmc",
function ( from , to ){
as.mcmc(from)
})
setAs("BFmcmc" , "matrix",
function ( from , to ){
as.matrix(from)
})
setAs("BFmcmc" , "data.frame",
function ( from , to ){
as.data.frame(from)
})
#' @rdname recompute-methods
#' @aliases recompute,BFmcmc-method
setMethod('recompute', signature(x = "BFmcmc", progress="ANY"),
function(x, progress, ...){
posterior(model=x@model, data = x@data, progress = progress, ...)
}
)
setMethod('compare', signature(numerator = "BFmcmc", denominator = "BFmcmc"),
function(numerator, denominator, ...){
compare(numerator = numerator@model, data = numerator@data, ...) /
compare(numerator = denominator@model, data = denominator@data, ...)
}
)
setMethod('compare', signature(numerator = "BFmcmc", denominator = "missing"),
function(numerator, denominator, ...){
compare(numerator = numerator@model, data = numerator@data, ...)
}
)
#' @rdname posterior-methods
#' @aliases posterior,BFmodel,missing,data.frame,missing-method
setMethod("posterior", signature(model="BFmodel", index="missing", data="data.frame", iterations="missing"),
function(model, index, data, iterations, ...)
stop("Iterations must be specified for posterior sampling.")
)
#' @rdname posterior-methods
#' @aliases posterior,BFBayesFactor,missing,missing,missing-method
setMethod("posterior", signature(model="BFBayesFactor", index="missing", data="missing", iterations="missing"),
function(model, index, data, iterations, ...)
stop("Iterations must be specified for posterior sampling.")
)
#' @rdname posterior-methods
#' @aliases posterior,BFBayesFactor,numeric,missing,numeric-method
setMethod('posterior', signature(model = "BFBayesFactor", index = "numeric", data = "missing", iterations = "numeric"),
function(model, index, data, iterations, ...){
if(length(model[index])>1) stop("Index must specify single element.")
posterior(model = model[index], iterations = iterations, ...)
}
)
#' @rdname posterior-methods
#' @aliases posterior,BFBayesFactor,missing,missing,numeric-method
setMethod('posterior', signature(model = "BFBayesFactor", index = "missing", data = "missing", iterations = "numeric"),
function(model, index=NULL, data, iterations, ...){
if(length(model)>1) stop("Index argument required for posterior with multiple numerators.")
posterior(model = model@numerator[[1]], data = model@data, iterations = iterations, ...)
}
)
#' @rdname posterior-methods
#' @aliases posterior,BFlinearModel,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFlinearModel", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
rscaleFixed = rpriorValues("allNways","fixed",model@prior$rscale[['fixed']])
rscaleRandom = rpriorValues("allNways","random",model@prior$rscale[['random']])
rscaleCont = rpriorValues("regression",,model@prior$rscale[['continuous']])
rscaleEffects = model@prior$rscale[['effects']]
formula = formula(model@identifier$formula)
checkFormula(formula, data, analysis = "lm")
factors = fmlaFactors(formula, data)[-1]
nFactors = length(factors)
dataTypes = model@dataTypes
relevantDataTypes = dataTypes[names(dataTypes) %in% factors]
dv = stringFromFormula(formula[[2]])
dv = composeTerm(dv)
if(model@type != "JZS") stop("Unknown model type.")
if( nFactors == 0 ){
stop("Sampling from intercept-only model not implemented.")
}else if(all(relevantDataTypes == "continuous")){
## Regression
X = fullDesignMatrix(formula, data, dataTypes)
chains = linearReg.Gibbs(y = data[[dv]],covariates = X,iterations = iterations, rscale = rscaleCont, ...)
}else if(all(relevantDataTypes != "continuous")){
# ANOVA or t test
chains = nWayFormula(formula=formula, data = data,
dataTypes = dataTypes,
rscaleFixed = rscaleFixed,
rscaleRandom = rscaleRandom,
rscaleEffects = rscaleEffects,
iterations = iterations,
posterior = TRUE, ...)
}else{
# GLM
chains = nWayFormula(formula=formula, data = data,
dataTypes = dataTypes,
rscaleFixed = rscaleFixed,
rscaleRandom = rscaleRandom,
rscaleCont = rscaleCont,
rscaleEffects = rscaleEffects,
iterations = iterations,
posterior = TRUE, ...)
}
return(new("BFmcmc",chains, model = model, data = data))
}
)
#' @rdname posterior-methods
#' @aliases posterior,BFindepSample,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFindepSample", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
formula = formula(model@identifier$formula)
rscale = model@prior$rscale
interval = model@prior$nullInterval
nullModel = ( formula[[3]] == 1 )
chains = ttestIndepSample.Gibbs(formula, data, nullModel, iterations,rscale, interval,...)
new("BFmcmc",chains,model = model, data = data)
})
#' @rdname posterior-methods
#' @aliases posterior,BFcontingencyTable,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFcontingencyTable", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
mod = formula(model@identifier)
type = model@type
prior = model@prior$a
marg = model@prior$fixedMargin
chains = sampleContingency(mod, type, marg, prior, data = data, iterations = iterations, ...)
new("BFmcmc",chains,model = model, data = data)
})
#' @rdname posterior-methods
#' @aliases posterior,BFoneSample,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFoneSample", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
mu = model@prior$mu
rscale = model@prior$rscale
interval = model@prior$nullInterval
nullModel = ( model@identifier$formula == "y ~ 0" )
chains = ttestOneSample.Gibbs(y = data$y, nullModel, iterations = iterations, rscale = rscale,
nullInterval = interval, ...)
new("BFmcmc",chains,model = model, data = data)
})
#' @rdname posterior-methods
#' @aliases posterior,BFmetat,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFmetat", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
rscale = model@prior$rscale
interval = model@prior$nullInterval
nullModel = ( model@identifier$formula == "d = 0" )
chains = meta.t.Metrop(t = data$t, n1 = data$n1, n2 = data$n2, nullModel, iterations = iterations,
rscale = rscale, nullInterval = interval, ...)
new("BFmcmc",chains, model = model, data = data)
})
#' @rdname posterior-methods
#' @aliases posterior,BFproportion,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFproportion", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
rscale = model@prior$rscale
p = model@prior$p0
interval = model@prior$nullInterval
nullModel = ( model@identifier$formula == "p = p0" )
chains = proportion.Metrop(y = data$y, N = data$N, nullModel, iterations = iterations,
nullInterval = interval, p = p, rscale = rscale, ...)
new("BFmcmc",chains, model = model, data = data)
})
#' @rdname posterior-methods
#' @aliases posterior,BFcorrelation,missing,data.frame,numeric-method
setMethod('posterior', signature(model = "BFcorrelation", index = "missing", data = "data.frame", iterations = "numeric"),
function(model, index = NULL, data, iterations, ...){
rscale = model@prior$rscale
interval = model@prior$nullInterval
nullModel = ( model@identifier$formula == "rho = 0" )
chains = correlation.Metrop(y = data$y, x = data$x, nullModel, iterations = iterations,
nullInterval = interval, rscale = rscale, ...)
new("BFmcmc",chains, model = model, data = data)
})
###########
## S3
###########
as.mcmc.BFmcmc <- function(x, ...){
return(S3Part(x))
}
as.matrix.BFmcmc <- function(x,...){
return(as.matrix(S3Part(x)))
}
as.data.frame.BFmcmc <- function(x, row.names=NULL,optional=FALSE,...){
return(as.data.frame(S3Part(x)))
}
|