File: compare_lme4.R

package info (click to toggle)
r-cran-bayesfactor 0.9.12-4.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,492 kB
  • sloc: cpp: 1,555; sh: 16; makefile: 7
file content (203 lines) | stat: -rw-r--r-- 8,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## ----echo=FALSE,message=FALSE,results='hide'----------------------------------
library(BayesFactor)

options(BFprogress = FALSE)
bfversion = BFInfo()
session = sessionInfo()[[1]]
rversion = paste(session$version.string," on ",session$platform,sep="")


options(markdown.HTML.stylesheet = 'extra/manual.css')
library(knitr)
opts_chunk$set(dpi = 200, out.width = "67%") 
options(digits=3)
require(graphics)
set.seed(2)

## ----message=FALSE,warning=FALSE----------------------------------------------
library(arm)
library(lme4)


## -----------------------------------------------------------------------------
# Number of participants
N <- 20
sig2 <- 1
sig2ID <- 1

# 3x3x3 design, with participant as random factor
effects <- expand.grid(A = c("A1","A2","A3"),
                       B = c("B1","B2","B3"),
                       C = c("C1","C2","C3"),
                       ID = paste("Sub",1:N,sep="")
)
Xdata <- model.matrix(~ A*B*C + ID, data=effects)
beta <- matrix(c(50,
          -.2,.2,
          0,0,
          .1,-.1,
          rnorm(N-1,0,sqrt(sig2ID)),
          0,0,0,0,
          -.1,.1,.1,-.1,
          0,0,0,0,
          0,0,0,0,0,0,0,0),
               ncol=1)
effects$y = rnorm(Xdata%*%beta,Xdata%*%beta,sqrt(sig2))

## -----------------------------------------------------------------------------
# Typical repeated measures ANOVA
summary(fullaov <- aov(y ~ A*B*C + Error(ID/(A*B*C)),data=effects))

## ----fig.width=10,fig.height=4------------------------------------------------
mns <- tapply(effects$y,list(effects$A,effects$B,effects$C),mean)
stderr = sqrt((sum(resid(fullaov[[3]])^2)/fullaov[[3]]$df.resid)/N)

par(mfrow=c(1,3),cex=1.1)
for(i in 1:3){
  matplot(mns[,,i],xaxt='n',typ='b',xlab="A",main=paste("C",i), 
          ylim=range(mns)+c(-1,1)*stderr,ylab="y")
  axis(1,at=1:3,lab=1:3)
  segments(1:3 + mns[,,i]*0,mns[,,i] + stderr,1:3 + mns[,,i]*0,mns[,,i] - stderr,col=rgb(0,0,0,.3))
}

## -----------------------------------------------------------------------------
t.is = system.time(bfs.is <- anovaBF(y ~ A*B*C + ID, data = effects, 
                                     whichRandom="ID")
)
t.la = system.time(bfs.la <- anovaBF(y ~ A*B*C + ID, data = effects, 
                                     whichRandom="ID",
                                     method = "laplace")
)

## ----fig.width=6,fig.height=6-------------------------------------------------
t.is
t.la

plot(log(extractBF(sort(bfs.is))$bf),log(extractBF(sort(bfs.la))$bf),
     xlab="Default Sampler",ylab="Laplace approximation",
     pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2)
abline(0,1)

bfs.is

## ----message=FALSE------------------------------------------------------------
chains <- lmBF(y ~ A + B + C + ID, data=effects, whichRandom = "ID", posterior=TRUE, iterations=10000)

lmerObj <- lmer(y ~ A + B + C + (1|ID), data=effects)
# Use arm function sim() to sample from posterior
chainsLmer = sim(lmerObj,n.sims=10000)

## -----------------------------------------------------------------------------
BF.sig2 <- chains[,colnames(chains)=="sig2"]
AG.sig2 <- (chainsLmer@sigma)^2
qqplot(log(BF.sig2),log(AG.sig2),pch=21,bg=rgb(0,0,1,.2),
       col=NULL,asp=TRUE,cex=1,xlab="BayesFactor samples",
       ylab="arm samples",main="Posterior samples of\nerror variance")
abline(0,1)

## -----------------------------------------------------------------------------
AG.raneff <- chainsLmer@ranef$ID[,,1]
BF.raneff <-  chains[,grep('ID-',colnames(chains),fixed='TRUE')]
plot(colMeans(BF.raneff),colMeans(AG.raneff),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Random effect posterior means")
abline(0,1)


## ----tidy=FALSE---------------------------------------------------------------
AG.fixeff <- chainsLmer@fixef
BF.fixeff <-  chains[,1:10]

# Adjust AG results from reference cell to sum to 0
Z = c(1,  1/3,  1/3,  1/3,  1/3,  1/3,  1/3,
      0, -1/3, -1/3,    0,    0,    0,    0,
      0,  2/3, -1/3,    0,    0,    0,    0,
      0, -1/3,  2/3,    0,    0,    0,    0,
      0,     0,   0, -1/3, -1/3,    0,    0,
      0,     0,   0,  2/3, -1/3,    0,    0,
      0,     0,   0, -1/3,  2/3,    0,    0,
      0,     0,   0,    0,    0, -1/3, -1/3,
      0,     0,   0,    0,    0,  2/3, -1/3,
      0,     0,   0,    0,    0, -1/3,  2/3)
dim(Z) = c(7,10)
Z = t(Z)

AG.fixeff2 = t(Z%*%t(AG.fixeff))

## Our grand mean has heavier tails
qqplot(BF.fixeff[,1],AG.fixeff2[,1],pch=21,bg=rgb(0,0,1,.2),col=NULL,asp=TRUE,cex=1,xlab="BayesFactor estimate",ylab="arm estimate",main="Grand mean posterior samples")
abline(0,1)

plot(colMeans(BF.fixeff[,-1]),colMeans(AG.fixeff2[,-1]),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Fixed effect posterior means")
abline(0,1)

## Compare posterior standard deviations
BFsd = apply(BF.fixeff[,-1],2,sd)
AGsd = apply(AG.fixeff2[,-1],2,sd)
plot(sort(AGsd/BFsd),pch=21,bg=rgb(0,0,1,.2),col="black",cex=1.2,ylab="Ratio of posterior standard deviations (arm/BF)",xlab="Fixed effect index")
## AG estimates are slightly larger, consistent with sig2 estimates
## probably due to prior


## ----message=FALSE,warning=FALSE----------------------------------------------
library(languageR)
library(xtable)

## -----------------------------------------------------------------------------
data(primingHeidPrevRT)

primingHeidPrevRT$lRTmin1 <- log(primingHeidPrevRT$RTmin1)

###Frequentist 

lr4 <- lmer(RT ~ Condition + (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime + ResponseToPrime*RTtoPrime +BaseFrequency ,primingHeidPrevRT)
# Get rid rid of some outlying response times
INDOL <- which(scale(resid(lr4)) < 2.5)
primHeidOL <- primingHeidPrevRT[INDOL,]

## -----------------------------------------------------------------------------
# Center continuous variables
primHeidOL$BaseFrequency <- primHeidOL$BaseFrequency - mean(primHeidOL$BaseFrequency)
primHeidOL$lRTmin1 <- primHeidOL$lRTmin1 - mean(primHeidOL$lRTmin1)
primHeidOL$RTtoPrime <- primHeidOL$RTtoPrime - mean(primHeidOL$RTtoPrime)

## -----------------------------------------------------------------------------
# LMER
lr4b <- lmer(  RT ~ Condition + ResponseToPrime +  (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency , primHeidOL)
# BayesFactor
B5out <- lmBF( RT ~ Condition + ResponseToPrime +     Word +    Subject  + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency  , primHeidOL , whichRandom = c("Word", "Subject"),  posterior = TRUE, iteration = 50000,columnFilter=c("Word","Subject"))

lmerEff <- fixef(lr4b)
bfEff <- colMeans(B5out[,1:10])

## ----results='asis'-----------------------------------------------------------
print(xtable(cbind("lmer fixed effects"=names(lmerEff))), type='html')

## ----tidy=FALSE---------------------------------------------------------------
# Adjust lmer results from reference cell to sum to 0
Z = c(1,   1/2, 1/2,    0,    0,    0,    0,
      0,  -1/2,   0,    0,    0,    0,    0,
      0,   1/2,   0,    0,    0,    0,    0,
      0,     0,-1/2,    0,    0,    0,    0,
      0,     0, 1/2,    0,    0,    0,    0,
      0,     0,   0,    1,    0,    0,    0,
      0,     0,   0,    0,    1,    0,  1/2,
      0,     0,   0,    0,    0,    1,    0,
      0,     0,   0,    0,    0,    0, -1/2,
      0,     0,   0,    0,    0,    0,  1/2)
dim(Z) = c(7,10)
Z = t(Z)

# Do reparameterization by pre-multimplying the parameter vector by Z
reparLmer <- Z %*% matrix(lmerEff,ncol=1)

# put results in data.frame for comparison
sideBySide <- data.frame(BayesFactor=bfEff,lmer=reparLmer)

## ----results='asis'-----------------------------------------------------------
print(xtable(sideBySide,digits=4), type='html')

## -----------------------------------------------------------------------------
# Notice Bayesian shrinkage
par(cex=1.5)
plot(sideBySide[-1,],pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2, main="fixed effects\n (excluding grand mean)")
abline(0,1, lty=2)