1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
## ----echo=FALSE,message=FALSE,results='hide'----------------------------------
library(BayesFactor)
options(BFprogress = FALSE)
bfversion = BFInfo()
session = sessionInfo()[[1]]
rversion = paste(session$version.string," on ",session$platform,sep="")
options(markdown.HTML.stylesheet = 'extra/manual.css')
library(knitr)
opts_chunk$set(dpi = 200, out.width = "67%")
options(digits=3)
require(graphics)
set.seed(2)
## ----message=FALSE,warning=FALSE----------------------------------------------
library(arm)
library(lme4)
## -----------------------------------------------------------------------------
# Number of participants
N <- 20
sig2 <- 1
sig2ID <- 1
# 3x3x3 design, with participant as random factor
effects <- expand.grid(A = c("A1","A2","A3"),
B = c("B1","B2","B3"),
C = c("C1","C2","C3"),
ID = paste("Sub",1:N,sep="")
)
Xdata <- model.matrix(~ A*B*C + ID, data=effects)
beta <- matrix(c(50,
-.2,.2,
0,0,
.1,-.1,
rnorm(N-1,0,sqrt(sig2ID)),
0,0,0,0,
-.1,.1,.1,-.1,
0,0,0,0,
0,0,0,0,0,0,0,0),
ncol=1)
effects$y = rnorm(Xdata%*%beta,Xdata%*%beta,sqrt(sig2))
## -----------------------------------------------------------------------------
# Typical repeated measures ANOVA
summary(fullaov <- aov(y ~ A*B*C + Error(ID/(A*B*C)),data=effects))
## ----fig.width=10,fig.height=4------------------------------------------------
mns <- tapply(effects$y,list(effects$A,effects$B,effects$C),mean)
stderr = sqrt((sum(resid(fullaov[[3]])^2)/fullaov[[3]]$df.resid)/N)
par(mfrow=c(1,3),cex=1.1)
for(i in 1:3){
matplot(mns[,,i],xaxt='n',typ='b',xlab="A",main=paste("C",i),
ylim=range(mns)+c(-1,1)*stderr,ylab="y")
axis(1,at=1:3,lab=1:3)
segments(1:3 + mns[,,i]*0,mns[,,i] + stderr,1:3 + mns[,,i]*0,mns[,,i] - stderr,col=rgb(0,0,0,.3))
}
## -----------------------------------------------------------------------------
t.is = system.time(bfs.is <- anovaBF(y ~ A*B*C + ID, data = effects,
whichRandom="ID")
)
t.la = system.time(bfs.la <- anovaBF(y ~ A*B*C + ID, data = effects,
whichRandom="ID",
method = "laplace")
)
## ----fig.width=6,fig.height=6-------------------------------------------------
t.is
t.la
plot(log(extractBF(sort(bfs.is))$bf),log(extractBF(sort(bfs.la))$bf),
xlab="Default Sampler",ylab="Laplace approximation",
pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2)
abline(0,1)
bfs.is
## ----message=FALSE------------------------------------------------------------
chains <- lmBF(y ~ A + B + C + ID, data=effects, whichRandom = "ID", posterior=TRUE, iterations=10000)
lmerObj <- lmer(y ~ A + B + C + (1|ID), data=effects)
# Use arm function sim() to sample from posterior
chainsLmer = sim(lmerObj,n.sims=10000)
## -----------------------------------------------------------------------------
BF.sig2 <- chains[,colnames(chains)=="sig2"]
AG.sig2 <- (chainsLmer@sigma)^2
qqplot(log(BF.sig2),log(AG.sig2),pch=21,bg=rgb(0,0,1,.2),
col=NULL,asp=TRUE,cex=1,xlab="BayesFactor samples",
ylab="arm samples",main="Posterior samples of\nerror variance")
abline(0,1)
## -----------------------------------------------------------------------------
AG.raneff <- chainsLmer@ranef$ID[,,1]
BF.raneff <- chains[,grep('ID-',colnames(chains),fixed='TRUE')]
plot(colMeans(BF.raneff),colMeans(AG.raneff),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Random effect posterior means")
abline(0,1)
## ----tidy=FALSE---------------------------------------------------------------
AG.fixeff <- chainsLmer@fixef
BF.fixeff <- chains[,1:10]
# Adjust AG results from reference cell to sum to 0
Z = c(1, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3,
0, -1/3, -1/3, 0, 0, 0, 0,
0, 2/3, -1/3, 0, 0, 0, 0,
0, -1/3, 2/3, 0, 0, 0, 0,
0, 0, 0, -1/3, -1/3, 0, 0,
0, 0, 0, 2/3, -1/3, 0, 0,
0, 0, 0, -1/3, 2/3, 0, 0,
0, 0, 0, 0, 0, -1/3, -1/3,
0, 0, 0, 0, 0, 2/3, -1/3,
0, 0, 0, 0, 0, -1/3, 2/3)
dim(Z) = c(7,10)
Z = t(Z)
AG.fixeff2 = t(Z%*%t(AG.fixeff))
## Our grand mean has heavier tails
qqplot(BF.fixeff[,1],AG.fixeff2[,1],pch=21,bg=rgb(0,0,1,.2),col=NULL,asp=TRUE,cex=1,xlab="BayesFactor estimate",ylab="arm estimate",main="Grand mean posterior samples")
abline(0,1)
plot(colMeans(BF.fixeff[,-1]),colMeans(AG.fixeff2[,-1]),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Fixed effect posterior means")
abline(0,1)
## Compare posterior standard deviations
BFsd = apply(BF.fixeff[,-1],2,sd)
AGsd = apply(AG.fixeff2[,-1],2,sd)
plot(sort(AGsd/BFsd),pch=21,bg=rgb(0,0,1,.2),col="black",cex=1.2,ylab="Ratio of posterior standard deviations (arm/BF)",xlab="Fixed effect index")
## AG estimates are slightly larger, consistent with sig2 estimates
## probably due to prior
## ----message=FALSE,warning=FALSE----------------------------------------------
library(languageR)
library(xtable)
## -----------------------------------------------------------------------------
data(primingHeidPrevRT)
primingHeidPrevRT$lRTmin1 <- log(primingHeidPrevRT$RTmin1)
###Frequentist
lr4 <- lmer(RT ~ Condition + (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime + ResponseToPrime*RTtoPrime +BaseFrequency ,primingHeidPrevRT)
# Get rid rid of some outlying response times
INDOL <- which(scale(resid(lr4)) < 2.5)
primHeidOL <- primingHeidPrevRT[INDOL,]
## -----------------------------------------------------------------------------
# Center continuous variables
primHeidOL$BaseFrequency <- primHeidOL$BaseFrequency - mean(primHeidOL$BaseFrequency)
primHeidOL$lRTmin1 <- primHeidOL$lRTmin1 - mean(primHeidOL$lRTmin1)
primHeidOL$RTtoPrime <- primHeidOL$RTtoPrime - mean(primHeidOL$RTtoPrime)
## -----------------------------------------------------------------------------
# LMER
lr4b <- lmer( RT ~ Condition + ResponseToPrime + (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency , primHeidOL)
# BayesFactor
B5out <- lmBF( RT ~ Condition + ResponseToPrime + Word + Subject + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency , primHeidOL , whichRandom = c("Word", "Subject"), posterior = TRUE, iteration = 50000,columnFilter=c("Word","Subject"))
lmerEff <- fixef(lr4b)
bfEff <- colMeans(B5out[,1:10])
## ----results='asis'-----------------------------------------------------------
print(xtable(cbind("lmer fixed effects"=names(lmerEff))), type='html')
## ----tidy=FALSE---------------------------------------------------------------
# Adjust lmer results from reference cell to sum to 0
Z = c(1, 1/2, 1/2, 0, 0, 0, 0,
0, -1/2, 0, 0, 0, 0, 0,
0, 1/2, 0, 0, 0, 0, 0,
0, 0,-1/2, 0, 0, 0, 0,
0, 0, 1/2, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1/2,
0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, -1/2,
0, 0, 0, 0, 0, 0, 1/2)
dim(Z) = c(7,10)
Z = t(Z)
# Do reparameterization by pre-multimplying the parameter vector by Z
reparLmer <- Z %*% matrix(lmerEff,ncol=1)
# put results in data.frame for comparison
sideBySide <- data.frame(BayesFactor=bfEff,lmer=reparLmer)
## ----results='asis'-----------------------------------------------------------
print(xtable(sideBySide,digits=4), type='html')
## -----------------------------------------------------------------------------
# Notice Bayesian shrinkage
par(cex=1.5)
plot(sideBySide[-1,],pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2, main="fixed effects\n (excluding grand mean)")
abline(0,1, lty=2)
|