File: compare_lme4.Rmd

package info (click to toggle)
r-cran-bayesfactor 0.9.12-4.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,492 kB
  • sloc: cpp: 1,555; sh: 16; makefile: 7
file content (278 lines) | stat: -rw-r--r-- 10,073 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
<!--
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Demos and comparisons}
\usepackage[utf8]{inputenc}
-->

![alt text](extra/logo.png)

------

```{r echo=FALSE,message=FALSE,results='hide'}
library(BayesFactor)

options(BFprogress = FALSE)
bfversion = BFInfo()
session = sessionInfo()[[1]]
rversion = paste(session$version.string," on ",session$platform,sep="")


options(markdown.HTML.stylesheet = 'extra/manual.css')
library(knitr)
opts_chunk$set(dpi = 200, out.width = "67%") 
options(digits=3)
require(graphics)
set.seed(2)
```

Comparison of BayesFactor against other packages
========================================================

This R markdown file runs a series of tests to ensure that the BayesFactor package is giving correct answers, and can gracefully handle probable input.

```{r message=FALSE,warning=FALSE}
library(arm)
library(lme4)

```

ANOVA
----------
First we generate some data.
```{r}
# Number of participants
N <- 20
sig2 <- 1
sig2ID <- 1

# 3x3x3 design, with participant as random factor
effects <- expand.grid(A = c("A1","A2","A3"),
                       B = c("B1","B2","B3"),
                       C = c("C1","C2","C3"),
                       ID = paste("Sub",1:N,sep="")
)
Xdata <- model.matrix(~ A*B*C + ID, data=effects)
beta <- matrix(c(50,
          -.2,.2,
          0,0,
          .1,-.1,
          rnorm(N-1,0,sqrt(sig2ID)),
          0,0,0,0,
          -.1,.1,.1,-.1,
          0,0,0,0,
          0,0,0,0,0,0,0,0),
               ncol=1)
effects$y = rnorm(Xdata%*%beta,Xdata%*%beta,sqrt(sig2))
```

```{r}
# Typical repeated measures ANOVA
summary(fullaov <- aov(y ~ A*B*C + Error(ID/(A*B*C)),data=effects))
```


We can plot the data with standard errors:
```{r fig.width=10,fig.height=4}
mns <- tapply(effects$y,list(effects$A,effects$B,effects$C),mean)
stderr = sqrt((sum(resid(fullaov[[3]])^2)/fullaov[[3]]$df.resid)/N)

par(mfrow=c(1,3),cex=1.1)
for(i in 1:3){
  matplot(mns[,,i],xaxt='n',typ='b',xlab="A",main=paste("C",i), 
          ylim=range(mns)+c(-1,1)*stderr,ylab="y")
  axis(1,at=1:3,lab=1:3)
  segments(1:3 + mns[,,i]*0,mns[,,i] + stderr,1:3 + mns[,,i]*0,mns[,,i] - stderr,col=rgb(0,0,0,.3))
}
```


### Bayes factor

Compute the Bayes factors, while testing the Laplace approximation
```{r}
t.is = system.time(bfs.is <- anovaBF(y ~ A*B*C + ID, data = effects, 
                                     whichRandom="ID")
)
t.la = system.time(bfs.la <- anovaBF(y ~ A*B*C + ID, data = effects, 
                                     whichRandom="ID",
                                     method = "laplace")
)
```

```{r fig.width=6,fig.height=6}
t.is
t.la

plot(log(extractBF(sort(bfs.is))$bf),log(extractBF(sort(bfs.la))$bf),
     xlab="Default Sampler",ylab="Laplace approximation",
     pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2)
abline(0,1)

bfs.is
```

Comparison to lmer and arm
------

We can use samples from the posterior distribution to compare `BayesFactor` with `lmer` and `arm`.
```{r message=FALSE}
chains <- lmBF(y ~ A + B + C + ID, data=effects, whichRandom = "ID", posterior=TRUE, iterations=10000)

lmerObj <- lmer(y ~ A + B + C + (1|ID), data=effects)
# Use arm function sim() to sample from posterior
chainsLmer = sim(lmerObj,n.sims=10000)
```

Compare estimates of variance
```{r}
BF.sig2 <- chains[,colnames(chains)=="sig2"]
AG.sig2 <- (chainsLmer@sigma)^2
qqplot(log(BF.sig2),log(AG.sig2),pch=21,bg=rgb(0,0,1,.2),
       col=NULL,asp=TRUE,cex=1,xlab="BayesFactor samples",
       ylab="arm samples",main="Posterior samples of\nerror variance")
abline(0,1)
```

Compare estimates of participant effects:
```{r}
AG.raneff <- chainsLmer@ranef$ID[,,1]
BF.raneff <-  chains[,grep('ID-',colnames(chains),fixed='TRUE')]
plot(colMeans(BF.raneff),colMeans(AG.raneff),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Random effect posterior means")
abline(0,1)

```

Compare estimates of fixed effects:
```{r tidy=FALSE}
AG.fixeff <- chainsLmer@fixef
BF.fixeff <-  chains[,1:10]

# Adjust AG results from reference cell to sum to 0
Z = c(1,  1/3,  1/3,  1/3,  1/3,  1/3,  1/3,
      0, -1/3, -1/3,    0,    0,    0,    0,
      0,  2/3, -1/3,    0,    0,    0,    0,
      0, -1/3,  2/3,    0,    0,    0,    0,
      0,     0,   0, -1/3, -1/3,    0,    0,
      0,     0,   0,  2/3, -1/3,    0,    0,
      0,     0,   0, -1/3,  2/3,    0,    0,
      0,     0,   0,    0,    0, -1/3, -1/3,
      0,     0,   0,    0,    0,  2/3, -1/3,
      0,     0,   0,    0,    0, -1/3,  2/3)
dim(Z) = c(7,10)
Z = t(Z)

AG.fixeff2 = t(Z%*%t(AG.fixeff))

## Our grand mean has heavier tails
qqplot(BF.fixeff[,1],AG.fixeff2[,1],pch=21,bg=rgb(0,0,1,.2),col=NULL,asp=TRUE,cex=1,xlab="BayesFactor estimate",ylab="arm estimate",main="Grand mean posterior samples")
abline(0,1)

plot(colMeans(BF.fixeff[,-1]),colMeans(AG.fixeff2[,-1]),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Fixed effect posterior means")
abline(0,1)

## Compare posterior standard deviations
BFsd = apply(BF.fixeff[,-1],2,sd)
AGsd = apply(AG.fixeff2[,-1],2,sd)
plot(sort(AGsd/BFsd),pch=21,bg=rgb(0,0,1,.2),col="black",cex=1.2,ylab="Ratio of posterior standard deviations (arm/BF)",xlab="Fixed effect index")
## AG estimates are slightly larger, consistent with sig2 estimates
## probably due to prior

```

Another comparison with lmer
-----------

We begin by loading required packages...
```{r message=FALSE,warning=FALSE}
library(languageR)
library(xtable)
```

...and creating the data set to analyze.
```{r}
data(primingHeidPrevRT)

primingHeidPrevRT$lRTmin1 <- log(primingHeidPrevRT$RTmin1)

###Frequentist 

lr4 <- lmer(RT ~ Condition + (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime + ResponseToPrime*RTtoPrime +BaseFrequency ,primingHeidPrevRT)
# Get rid rid of some outlying response times
INDOL <- which(scale(resid(lr4)) < 2.5)
primHeidOL <- primingHeidPrevRT[INDOL,]
```

The first thing we have to do is center the continuous variables. This is done automatically by lmBF(), as required by Liang et al. (2008). This, of course, changes the definition of the intercept.

```{r}
# Center continuous variables
primHeidOL$BaseFrequency <- primHeidOL$BaseFrequency - mean(primHeidOL$BaseFrequency)
primHeidOL$lRTmin1 <- primHeidOL$lRTmin1 - mean(primHeidOL$lRTmin1)
primHeidOL$RTtoPrime <- primHeidOL$RTtoPrime - mean(primHeidOL$RTtoPrime)
```

Now we perform both analyses on the same data, and place the fixed effect estimates for both packages into their own vectors.

```{r}
# LMER
lr4b <- lmer(  RT ~ Condition + ResponseToPrime +  (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency , primHeidOL)
# BayesFactor
B5out <- lmBF( RT ~ Condition + ResponseToPrime +     Word +    Subject  + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency  , primHeidOL , whichRandom = c("Word", "Subject"),  posterior = TRUE, iteration = 50000,columnFilter=c("Word","Subject"))

lmerEff <- fixef(lr4b)
bfEff <- colMeans(B5out[,1:10])
```

`lmer` uses a "reference cell" parameterization, rather than imposing sum-to-0 constraints. We can tell what the reference cell is by looking at the parameter names.

```{r results='asis'}
print(xtable(cbind("lmer fixed effects"=names(lmerEff))), type='html')
```

Notice what's missing: for the categorical parameters, we are missing `Conditionbaseheid` and `ResponseToPrimecorrect`. For the slope parameters, we are missing `ResponseToPrimecorrect:RTtoPrime`. The missing effects tell us what the reference cells are. Since the reference cell parameterization is just a linear transformation of the sum-to-0 parameterization, we can create a matrix that allows us to move from one to the other. We call this $10 \times 7$ matrix `Z`. It takes the 7 "reference-cell" parameters from `lmer` and maps them into the 10 linearly constrained parameters from `lmBF`.

The first row of `Z` transforms the intercept (reference cell) to the grand mean (sum-to-0). We have to add half of the two fixed effects back into the intercept. The second and third row divide the totl effect of `Condition` into two equal parts, one for `baseheid` and one for `heid`. Rows four and five do the same for `ResponseToPrime`.

The slopes that do not enter into interactions are fine as they are; however, `ResponseToPrimecorrect:RTtoPrime` serves as our reference cell for the `ResponseToPrime:RTtoPrime` interaction. We treat these slopes analogously to the grand mean; we take `RTtoPrime` and add half the `ResponseToPrimeincorrect:RTtoPrime` effect to it, to make it a grand mean slope. The last two rows divide up the `ResponseToPrimeincorrect:RTtoPrime` effect between `ResponseToPrimeincorrect:RTtoPrime` and `ResponseToPrimecorrect:RTtoPrime`.

```{r tidy=FALSE}
# Adjust lmer results from reference cell to sum to 0
Z = c(1,   1/2, 1/2,    0,    0,    0,    0,
      0,  -1/2,   0,    0,    0,    0,    0,
      0,   1/2,   0,    0,    0,    0,    0,
      0,     0,-1/2,    0,    0,    0,    0,
      0,     0, 1/2,    0,    0,    0,    0,
      0,     0,   0,    1,    0,    0,    0,
      0,     0,   0,    0,    1,    0,  1/2,
      0,     0,   0,    0,    0,    1,    0,
      0,     0,   0,    0,    0,    0, -1/2,
      0,     0,   0,    0,    0,    0,  1/2)
dim(Z) = c(7,10)
Z = t(Z)

# Do reparameterization by pre-multimplying the parameter vector by Z
reparLmer <- Z %*% matrix(lmerEff,ncol=1)

# put results in data.frame for comparison
sideBySide <- data.frame(BayesFactor=bfEff,lmer=reparLmer)
```

We can look at them side by side for comparison:
```{r results='asis'}
print(xtable(sideBySide,digits=4), type='html')
```

...and plot them:
```{r}
# Notice Bayesian shrinkage
par(cex=1.5)
plot(sideBySide[-1,],pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2, main="fixed effects\n (excluding grand mean)")
abline(0,1, lty=2)
```

The results are quite close to one another, with a bit of Bayesian shrinkage.

-------

*This document was compiled with version `r bfversion` of BayesFactor (`r rversion`).*