1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
<!--
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Demos and comparisons}
\usepackage[utf8]{inputenc}
-->

------
```{r echo=FALSE,message=FALSE,results='hide'}
library(BayesFactor)
options(BFprogress = FALSE)
bfversion = BFInfo()
session = sessionInfo()[[1]]
rversion = paste(session$version.string," on ",session$platform,sep="")
options(markdown.HTML.stylesheet = 'extra/manual.css')
library(knitr)
opts_chunk$set(dpi = 200, out.width = "67%")
options(digits=3)
require(graphics)
set.seed(2)
```
Comparison of BayesFactor against other packages
========================================================
This R markdown file runs a series of tests to ensure that the BayesFactor package is giving correct answers, and can gracefully handle probable input.
```{r message=FALSE,warning=FALSE}
library(arm)
library(lme4)
```
ANOVA
----------
First we generate some data.
```{r}
# Number of participants
N <- 20
sig2 <- 1
sig2ID <- 1
# 3x3x3 design, with participant as random factor
effects <- expand.grid(A = c("A1","A2","A3"),
B = c("B1","B2","B3"),
C = c("C1","C2","C3"),
ID = paste("Sub",1:N,sep="")
)
Xdata <- model.matrix(~ A*B*C + ID, data=effects)
beta <- matrix(c(50,
-.2,.2,
0,0,
.1,-.1,
rnorm(N-1,0,sqrt(sig2ID)),
0,0,0,0,
-.1,.1,.1,-.1,
0,0,0,0,
0,0,0,0,0,0,0,0),
ncol=1)
effects$y = rnorm(Xdata%*%beta,Xdata%*%beta,sqrt(sig2))
```
```{r}
# Typical repeated measures ANOVA
summary(fullaov <- aov(y ~ A*B*C + Error(ID/(A*B*C)),data=effects))
```
We can plot the data with standard errors:
```{r fig.width=10,fig.height=4}
mns <- tapply(effects$y,list(effects$A,effects$B,effects$C),mean)
stderr = sqrt((sum(resid(fullaov[[3]])^2)/fullaov[[3]]$df.resid)/N)
par(mfrow=c(1,3),cex=1.1)
for(i in 1:3){
matplot(mns[,,i],xaxt='n',typ='b',xlab="A",main=paste("C",i),
ylim=range(mns)+c(-1,1)*stderr,ylab="y")
axis(1,at=1:3,lab=1:3)
segments(1:3 + mns[,,i]*0,mns[,,i] + stderr,1:3 + mns[,,i]*0,mns[,,i] - stderr,col=rgb(0,0,0,.3))
}
```
### Bayes factor
Compute the Bayes factors, while testing the Laplace approximation
```{r}
t.is = system.time(bfs.is <- anovaBF(y ~ A*B*C + ID, data = effects,
whichRandom="ID")
)
t.la = system.time(bfs.la <- anovaBF(y ~ A*B*C + ID, data = effects,
whichRandom="ID",
method = "laplace")
)
```
```{r fig.width=6,fig.height=6}
t.is
t.la
plot(log(extractBF(sort(bfs.is))$bf),log(extractBF(sort(bfs.la))$bf),
xlab="Default Sampler",ylab="Laplace approximation",
pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2)
abline(0,1)
bfs.is
```
Comparison to lmer and arm
------
We can use samples from the posterior distribution to compare `BayesFactor` with `lmer` and `arm`.
```{r message=FALSE}
chains <- lmBF(y ~ A + B + C + ID, data=effects, whichRandom = "ID", posterior=TRUE, iterations=10000)
lmerObj <- lmer(y ~ A + B + C + (1|ID), data=effects)
# Use arm function sim() to sample from posterior
chainsLmer = sim(lmerObj,n.sims=10000)
```
Compare estimates of variance
```{r}
BF.sig2 <- chains[,colnames(chains)=="sig2"]
AG.sig2 <- (chainsLmer@sigma)^2
qqplot(log(BF.sig2),log(AG.sig2),pch=21,bg=rgb(0,0,1,.2),
col=NULL,asp=TRUE,cex=1,xlab="BayesFactor samples",
ylab="arm samples",main="Posterior samples of\nerror variance")
abline(0,1)
```
Compare estimates of participant effects:
```{r}
AG.raneff <- chainsLmer@ranef$ID[,,1]
BF.raneff <- chains[,grep('ID-',colnames(chains),fixed='TRUE')]
plot(colMeans(BF.raneff),colMeans(AG.raneff),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Random effect posterior means")
abline(0,1)
```
Compare estimates of fixed effects:
```{r tidy=FALSE}
AG.fixeff <- chainsLmer@fixef
BF.fixeff <- chains[,1:10]
# Adjust AG results from reference cell to sum to 0
Z = c(1, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3,
0, -1/3, -1/3, 0, 0, 0, 0,
0, 2/3, -1/3, 0, 0, 0, 0,
0, -1/3, 2/3, 0, 0, 0, 0,
0, 0, 0, -1/3, -1/3, 0, 0,
0, 0, 0, 2/3, -1/3, 0, 0,
0, 0, 0, -1/3, 2/3, 0, 0,
0, 0, 0, 0, 0, -1/3, -1/3,
0, 0, 0, 0, 0, 2/3, -1/3,
0, 0, 0, 0, 0, -1/3, 2/3)
dim(Z) = c(7,10)
Z = t(Z)
AG.fixeff2 = t(Z%*%t(AG.fixeff))
## Our grand mean has heavier tails
qqplot(BF.fixeff[,1],AG.fixeff2[,1],pch=21,bg=rgb(0,0,1,.2),col=NULL,asp=TRUE,cex=1,xlab="BayesFactor estimate",ylab="arm estimate",main="Grand mean posterior samples")
abline(0,1)
plot(colMeans(BF.fixeff[,-1]),colMeans(AG.fixeff2[,-1]),pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2,xlab="BayesFactor estimate",ylab="arm estimate",main="Fixed effect posterior means")
abline(0,1)
## Compare posterior standard deviations
BFsd = apply(BF.fixeff[,-1],2,sd)
AGsd = apply(AG.fixeff2[,-1],2,sd)
plot(sort(AGsd/BFsd),pch=21,bg=rgb(0,0,1,.2),col="black",cex=1.2,ylab="Ratio of posterior standard deviations (arm/BF)",xlab="Fixed effect index")
## AG estimates are slightly larger, consistent with sig2 estimates
## probably due to prior
```
Another comparison with lmer
-----------
We begin by loading required packages...
```{r message=FALSE,warning=FALSE}
library(languageR)
library(xtable)
```
...and creating the data set to analyze.
```{r}
data(primingHeidPrevRT)
primingHeidPrevRT$lRTmin1 <- log(primingHeidPrevRT$RTmin1)
###Frequentist
lr4 <- lmer(RT ~ Condition + (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime + ResponseToPrime*RTtoPrime +BaseFrequency ,primingHeidPrevRT)
# Get rid rid of some outlying response times
INDOL <- which(scale(resid(lr4)) < 2.5)
primHeidOL <- primingHeidPrevRT[INDOL,]
```
The first thing we have to do is center the continuous variables. This is done automatically by lmBF(), as required by Liang et al. (2008). This, of course, changes the definition of the intercept.
```{r}
# Center continuous variables
primHeidOL$BaseFrequency <- primHeidOL$BaseFrequency - mean(primHeidOL$BaseFrequency)
primHeidOL$lRTmin1 <- primHeidOL$lRTmin1 - mean(primHeidOL$lRTmin1)
primHeidOL$RTtoPrime <- primHeidOL$RTtoPrime - mean(primHeidOL$RTtoPrime)
```
Now we perform both analyses on the same data, and place the fixed effect estimates for both packages into their own vectors.
```{r}
# LMER
lr4b <- lmer( RT ~ Condition + ResponseToPrime + (1|Word)+ (1|Subject) + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency , primHeidOL)
# BayesFactor
B5out <- lmBF( RT ~ Condition + ResponseToPrime + Word + Subject + lRTmin1 + RTtoPrime + ResponseToPrime*RTtoPrime + BaseFrequency , primHeidOL , whichRandom = c("Word", "Subject"), posterior = TRUE, iteration = 50000,columnFilter=c("Word","Subject"))
lmerEff <- fixef(lr4b)
bfEff <- colMeans(B5out[,1:10])
```
`lmer` uses a "reference cell" parameterization, rather than imposing sum-to-0 constraints. We can tell what the reference cell is by looking at the parameter names.
```{r results='asis'}
print(xtable(cbind("lmer fixed effects"=names(lmerEff))), type='html')
```
Notice what's missing: for the categorical parameters, we are missing `Conditionbaseheid` and `ResponseToPrimecorrect`. For the slope parameters, we are missing `ResponseToPrimecorrect:RTtoPrime`. The missing effects tell us what the reference cells are. Since the reference cell parameterization is just a linear transformation of the sum-to-0 parameterization, we can create a matrix that allows us to move from one to the other. We call this $10 \times 7$ matrix `Z`. It takes the 7 "reference-cell" parameters from `lmer` and maps them into the 10 linearly constrained parameters from `lmBF`.
The first row of `Z` transforms the intercept (reference cell) to the grand mean (sum-to-0). We have to add half of the two fixed effects back into the intercept. The second and third row divide the totl effect of `Condition` into two equal parts, one for `baseheid` and one for `heid`. Rows four and five do the same for `ResponseToPrime`.
The slopes that do not enter into interactions are fine as they are; however, `ResponseToPrimecorrect:RTtoPrime` serves as our reference cell for the `ResponseToPrime:RTtoPrime` interaction. We treat these slopes analogously to the grand mean; we take `RTtoPrime` and add half the `ResponseToPrimeincorrect:RTtoPrime` effect to it, to make it a grand mean slope. The last two rows divide up the `ResponseToPrimeincorrect:RTtoPrime` effect between `ResponseToPrimeincorrect:RTtoPrime` and `ResponseToPrimecorrect:RTtoPrime`.
```{r tidy=FALSE}
# Adjust lmer results from reference cell to sum to 0
Z = c(1, 1/2, 1/2, 0, 0, 0, 0,
0, -1/2, 0, 0, 0, 0, 0,
0, 1/2, 0, 0, 0, 0, 0,
0, 0,-1/2, 0, 0, 0, 0,
0, 0, 1/2, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1/2,
0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, -1/2,
0, 0, 0, 0, 0, 0, 1/2)
dim(Z) = c(7,10)
Z = t(Z)
# Do reparameterization by pre-multimplying the parameter vector by Z
reparLmer <- Z %*% matrix(lmerEff,ncol=1)
# put results in data.frame for comparison
sideBySide <- data.frame(BayesFactor=bfEff,lmer=reparLmer)
```
We can look at them side by side for comparison:
```{r results='asis'}
print(xtable(sideBySide,digits=4), type='html')
```
...and plot them:
```{r}
# Notice Bayesian shrinkage
par(cex=1.5)
plot(sideBySide[-1,],pch=21,bg=rgb(0,0,1,.2),col="black",asp=TRUE,cex=1.2, main="fixed effects\n (excluding grand mean)")
abline(0,1, lty=2)
```
The results are quite close to one another, with a bit of Bayesian shrinkage.
-------
*This document was compiled with version `r bfversion` of BayesFactor (`r rversion`).*
|