File: rhierBinLogit.R

package info (click to toggle)
r-cran-bayesm 3.1-5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,204 kB
  • sloc: cpp: 3,115; ansic: 89; makefile: 7; sh: 4
file content (233 lines) | stat: -rwxr-xr-x 7,788 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#
# -----------------------------------------------------------------------------
#
rhierBinLogit =
function(Data,Prior,Mcmc){
.Deprecated(msg = "'rhierBinLogit' is depricated \nUse 'rhierMnlRwMixture' instead")
#
# revision history: 
#	changed 5/12/05 by Rossi to add error checking
#       1/07 removed init.rmultiregfp
#       3/07 added classes
#
# purpose: run binary heterogeneous logit model 
#
# Arguments:
#   Data contains a list of (lgtdata[[i]],Z)
#      lgtdata[[i]]=list(y,X)
#         y is index of brand chosen, y=1 is exp[X'beta]/(1+exp[X'beta])
#         X is a matrix that is n_i x by nvar
#      Z is a matrix of demographic variables nlgt*nz that have been 
#	  mean centered so that the intercept is interpretable
#   Prior contains a list of (nu,V,Deltabar,ADelta)
#      beta_i ~ N(Z%*%Delta,Vbeta)
#      vec(Delta) ~ N(vec(Deltabar),Vbeta (x) ADelta^-1)
#      Vbeta ~ IW(nu,V)
#   Mcmc is a list of (sbeta,R,keep)
#      sbeta is scale factor for RW increment for beta_is
#      R is number of draws
#      keep every keepth draw
#
# Output:
#      a list of Deltadraw (R/keep x nvar x nz), Vbetadraw (R/keep x nvar**2), 
#         llike (R/keep), betadraw is a nlgt x nvar x nz x R/keep array of draws of betas
#         nunits=length(lgtdata)
#
#  define functions needed
#
# ------------------------------------------------------------------------
#
loglike=
function(y,X,beta) {
# function computes log likelihood of data for binomial logit model
# Pr(y=1) = 1 - Pr(y=0) = exp[X'beta]/(1+exp[X'beta])
prob = exp(X%*%beta)/(1+exp(X%*%beta))
prob = prob*y + (1-prob)*(1-y)
sum(log(prob))
}
#
#
#  check arguments
#
if(missing(Data)) {pandterm("Requires Data argument -- list of m, lgtdata, and (possibly) Z")}
  if(is.null(Data$lgtdata)) {pandterm("Requires Data element lgtdata (list of data for each unit)")}
  lgtdata=Data$lgtdata
  nlgt=length(lgtdata)
if(is.null(Data$Z)) { cat("Z not specified -- putting in iota",fill=TRUE); fsh() ; Z=matrix(rep(1,nlgt),ncol=1)}
  else {if (!is.matrix(Data$Z)) {pandterm("Z must be a matrix")}
    else {if (nrow(Data$Z) != nlgt) {pandterm(paste("nrow(Z) ",nrow(Z),"ne number logits ",nlgt))}
      else {Z=Data$Z}}}
  nz=ncol(Z)
#
# check lgtdata for validity
#
m=2  # set two choice alternatives for Greg's code
ypooled=NULL
Xpooled=NULL
if(!is.null(lgtdata[[1]]$X & is.matrix(lgtdata[[1]]$X))) {oldncol=ncol(lgtdata[[1]]$X)}
for (i in 1:nlgt) 
{
    if(is.null(lgtdata[[i]]$y)) {pandterm(paste0("Requires element y of lgtdata[[",i,"]]"))}
    if(is.null(lgtdata[[i]]$X)) {pandterm(paste0("Requires element X of lgtdata[[",i,"]]"))}
    if(!is.matrix(lgtdata[[i]]$X)) {pandterm(paste0("lgtdata[[",i,"]]$X must be a matrix"))}
    if(!is.vector(lgtdata[[i]]$y, mode = "numeric") & !is.vector(lgtdata[[i]]$y, mode = "logical") & !is.matrix(lgtdata[[i]]$y)) 
      {pandterm(paste0("lgtdata[[",i,"]]$y must be a numeric or logical vector or matrix"))}
    if(is.matrix(lgtdata[[i]]$y) & ncol(lgtdata[[i]]$y)>1) {pandterm(paste0("lgtdata[[",i,"]]$y must be a vector or one-column matrix"))}
    ypooled=c(ypooled,lgtdata[[i]]$y)
    nrowX=nrow(lgtdata[[i]]$X)
    if((nrowX) !=length(lgtdata[[i]]$y)) {pandterm(paste("nrow(X) ne length(yi); exception at unit",i))}
    newncol=ncol(lgtdata[[i]]$X)
    if(newncol != oldncol) {pandterm(paste("All X elements must have same # of cols; exception at unit",i))}
    Xpooled=rbind(Xpooled,lgtdata[[i]]$X)
    oldncol=newncol
}
nvar=ncol(Xpooled)
levely=as.numeric(levels(as.factor(ypooled)))
if(length(levely) != m) {pandterm(paste("y takes on ",length(levely)," values -- must be = m"))}
bady=FALSE
for (i in 0:1 )
{
    if(levely[i+1] != i) bady=TRUE
}
cat("Table of Y values pooled over all units",fill=TRUE)
print(table(ypooled))
if (bady) 
  {pandterm("Invalid Y")}
#
# check on prior
#
if(missing(Prior)){
    nu=nvar+3
    V=nu*diag(nvar)
    Deltabar=matrix(rep(0,nz*nvar),ncol=nvar)
    ADelta=.01*diag(nz) }
else {
    if(is.null(Prior$nu)) {nu=nvar+3}  else {nu=Prior$nu}
        if(nu < 1) {pandterm("invalid nu value")}
    if(is.null(Prior$V)) {V=nu*diag(rep(1,nvar))} else {V=Prior$V}
    if(sum(dim(V)==c(nvar,nvar)) !=2) pandterm("Invalid V in prior")
    if(is.null(Prior$ADelta) ) {ADelta=.01*diag(nz)} else {ADelta=Prior$ADelta}
    if(ncol(ADelta) != nz | nrow(ADelta) != nz) {pandterm("ADelta must be nz x nz")}
    if(is.null(Prior$Deltabar) ) {Deltabar=matrix(rep(0,nz*nvar),ncol=nvar)} else {Deltabar=Prior$Deltabar}
}
#
# check on Mcmc
#
if(missing(Mcmc)) 
  {pandterm("Requires Mcmc list argument")}
else 
   { 
    if(is.null(Mcmc$sbeta)) {sbeta=.2} else {sbeta=Mcmc$sbeta}
    if(is.null(Mcmc$keep)) {keep=1} else {keep=Mcmc$keep}
    if(is.null(Mcmc$R)) {pandterm("Requires R argument in Mcmc list")} else {R=Mcmc$R}
    }
#
# print out problem
#
cat(" ",fill=TRUE)
cat("Attempting MCMC Inference for Hierarchical Binary Logit:",fill=TRUE)
cat(paste("  ",nvar," variables in X"),fill=TRUE)
cat(paste("  ",nz," variables in Z"),fill=TRUE)
cat(paste("   for ",nlgt," cross-sectional units"),fill=TRUE)
cat(" ",fill=TRUE)
cat("Prior Parms: ",fill=TRUE)
cat("nu =",nu,fill=TRUE)
cat("V ",fill=TRUE)
print(V)
cat("Deltabar",fill=TRUE)
print(Deltabar)
cat("ADelta",fill=TRUE)
print(ADelta)
cat(" ",fill=TRUE)
cat("MCMC Parms: ",fill=TRUE)
cat(paste("sbeta=",round(sbeta,3)," R= ",R," keep= ",keep),fill=TRUE)
cat("",fill=TRUE)

nlgt=length(lgtdata)
nvar=ncol(lgtdata[[1]]$X)
nz=ncol(Z)



#
# initialize storage for draws
#
Vbetadraw=matrix(double(floor(R/keep)*nvar*nvar),ncol=nvar*nvar)
betadraw=array(double(floor(R/keep)*nlgt*nvar),dim=c(nlgt,nvar,floor(R/keep)))
Deltadraw=matrix(double(floor(R/keep)*nvar*nz),ncol=nvar*nz)
oldbetas=matrix(double(nlgt*nvar),ncol=nvar)
oldVbeta=diag(nvar)
oldVbetai=diag(nvar)
oldDelta=matrix(double(nvar*nz),ncol=nvar)

betad = array(0,dim=c(nvar))
betan = array(0,dim=c(nvar))
reject = array(0,dim=c(R/keep))
llike=array(0,dim=c(R/keep))

itime=proc.time()[3]
cat("MCMC Iteration (est time to end - min)",fill=TRUE)
fsh()
for (j in 1:R) {
	rej = 0
	logl = 0
	sV = sbeta*oldVbeta
	root=t(chol(sV))

#	Draw B-h|B-bar, V

	for (i in 1:nlgt) {

		betad = oldbetas[i,]
		betan = betad + root%*%rnorm(nvar)
# data		
		lognew = loglike(lgtdata[[i]]$y,lgtdata[[i]]$X,betan)
		logold = loglike(lgtdata[[i]]$y,lgtdata[[i]]$X,betad) 
# heterogeneity
logknew = -.5*(t(betan)-Z[i,]%*%oldDelta) %*% oldVbetai %*% (betan-t(Z[i,]%*%oldDelta))
logkold = -.5*(t(betad)-Z[i,]%*%oldDelta) %*% oldVbetai %*% (betad-t(Z[i,]%*%oldDelta))
# MH step
		alpha = exp(lognew + logknew - logold - logkold)
		if(alpha=="NaN") alpha=-1
		u = runif(n=1,min=0, max=1)
		if(u < alpha) { 
			oldbetas[i,] = betan
			logl = logl + lognew } else {
		 	logl = logl + logold
			rej = rej+1  }
		}
#	Draw B-bar and V as a multivariate regression
	out=rmultireg(oldbetas,Z,Deltabar,ADelta,nu,V)
	oldDelta=out$B
	oldVbeta=out$Sigma
	oldVbetai=chol2inv(chol(oldVbeta))

	if((j%%100)==0) 
          {
           ctime=proc.time()[3]
           timetoend=((ctime-itime)/j)*(R-j)
           cat(" ",j," (",round(timetoend/60,1),")",fill=TRUE)
           fsh() }
	mkeep=j/keep
	if(mkeep*keep == (floor(mkeep)*keep))
          {Deltadraw[mkeep,]=as.vector(oldDelta)
           Vbetadraw[mkeep,]=as.vector(oldVbeta)
           betadraw[,,mkeep]=oldbetas
           llike[mkeep]=logl
           reject[mkeep]=rej/nlgt
          }
}
ctime=proc.time()[3]
cat(" Total Time Elapsed: ",round((ctime-itime)/60,2),fill=TRUE)


attributes(betadraw)$class=c("bayesm.hcoef")
attributes(Deltadraw)$class=c("bayesm.mat","mcmc")
attributes(Deltadraw)$mcpar=c(1,R,keep)
attributes(Vbetadraw)$class=c("bayesm.var","bayesm.mat","mcmc")
attributes(Vbetadraw)$mcpar=c(1,R,keep)

return(list(betadraw=betadraw,Vbetadraw=Vbetadraw,Deltadraw=Deltadraw,llike=llike,reject=reject))
}