1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#
# -----------------------------------------------------------------------------
#
rhierBinLogit =
function(Data,Prior,Mcmc){
.Deprecated(msg = "'rhierBinLogit' is depricated \nUse 'rhierMnlRwMixture' instead")
#
# revision history:
# changed 5/12/05 by Rossi to add error checking
# 1/07 removed init.rmultiregfp
# 3/07 added classes
#
# purpose: run binary heterogeneous logit model
#
# Arguments:
# Data contains a list of (lgtdata[[i]],Z)
# lgtdata[[i]]=list(y,X)
# y is index of brand chosen, y=1 is exp[X'beta]/(1+exp[X'beta])
# X is a matrix that is n_i x by nvar
# Z is a matrix of demographic variables nlgt*nz that have been
# mean centered so that the intercept is interpretable
# Prior contains a list of (nu,V,Deltabar,ADelta)
# beta_i ~ N(Z%*%Delta,Vbeta)
# vec(Delta) ~ N(vec(Deltabar),Vbeta (x) ADelta^-1)
# Vbeta ~ IW(nu,V)
# Mcmc is a list of (sbeta,R,keep)
# sbeta is scale factor for RW increment for beta_is
# R is number of draws
# keep every keepth draw
#
# Output:
# a list of Deltadraw (R/keep x nvar x nz), Vbetadraw (R/keep x nvar**2),
# llike (R/keep), betadraw is a nlgt x nvar x nz x R/keep array of draws of betas
# nunits=length(lgtdata)
#
# define functions needed
#
# ------------------------------------------------------------------------
#
loglike=
function(y,X,beta) {
# function computes log likelihood of data for binomial logit model
# Pr(y=1) = 1 - Pr(y=0) = exp[X'beta]/(1+exp[X'beta])
prob = exp(X%*%beta)/(1+exp(X%*%beta))
prob = prob*y + (1-prob)*(1-y)
sum(log(prob))
}
#
#
# check arguments
#
if(missing(Data)) {pandterm("Requires Data argument -- list of m, lgtdata, and (possibly) Z")}
if(is.null(Data$lgtdata)) {pandterm("Requires Data element lgtdata (list of data for each unit)")}
lgtdata=Data$lgtdata
nlgt=length(lgtdata)
if(is.null(Data$Z)) { cat("Z not specified -- putting in iota",fill=TRUE); fsh() ; Z=matrix(rep(1,nlgt),ncol=1)}
else {if (!is.matrix(Data$Z)) {pandterm("Z must be a matrix")}
else {if (nrow(Data$Z) != nlgt) {pandterm(paste("nrow(Z) ",nrow(Z),"ne number logits ",nlgt))}
else {Z=Data$Z}}}
nz=ncol(Z)
#
# check lgtdata for validity
#
m=2 # set two choice alternatives for Greg's code
ypooled=NULL
Xpooled=NULL
if(!is.null(lgtdata[[1]]$X & is.matrix(lgtdata[[1]]$X))) {oldncol=ncol(lgtdata[[1]]$X)}
for (i in 1:nlgt)
{
if(is.null(lgtdata[[i]]$y)) {pandterm(paste0("Requires element y of lgtdata[[",i,"]]"))}
if(is.null(lgtdata[[i]]$X)) {pandterm(paste0("Requires element X of lgtdata[[",i,"]]"))}
if(!is.matrix(lgtdata[[i]]$X)) {pandterm(paste0("lgtdata[[",i,"]]$X must be a matrix"))}
if(!is.vector(lgtdata[[i]]$y, mode = "numeric") & !is.vector(lgtdata[[i]]$y, mode = "logical") & !is.matrix(lgtdata[[i]]$y))
{pandterm(paste0("lgtdata[[",i,"]]$y must be a numeric or logical vector or matrix"))}
if(is.matrix(lgtdata[[i]]$y) & ncol(lgtdata[[i]]$y)>1) {pandterm(paste0("lgtdata[[",i,"]]$y must be a vector or one-column matrix"))}
ypooled=c(ypooled,lgtdata[[i]]$y)
nrowX=nrow(lgtdata[[i]]$X)
if((nrowX) !=length(lgtdata[[i]]$y)) {pandterm(paste("nrow(X) ne length(yi); exception at unit",i))}
newncol=ncol(lgtdata[[i]]$X)
if(newncol != oldncol) {pandterm(paste("All X elements must have same # of cols; exception at unit",i))}
Xpooled=rbind(Xpooled,lgtdata[[i]]$X)
oldncol=newncol
}
nvar=ncol(Xpooled)
levely=as.numeric(levels(as.factor(ypooled)))
if(length(levely) != m) {pandterm(paste("y takes on ",length(levely)," values -- must be = m"))}
bady=FALSE
for (i in 0:1 )
{
if(levely[i+1] != i) bady=TRUE
}
cat("Table of Y values pooled over all units",fill=TRUE)
print(table(ypooled))
if (bady)
{pandterm("Invalid Y")}
#
# check on prior
#
if(missing(Prior)){
nu=nvar+3
V=nu*diag(nvar)
Deltabar=matrix(rep(0,nz*nvar),ncol=nvar)
ADelta=.01*diag(nz) }
else {
if(is.null(Prior$nu)) {nu=nvar+3} else {nu=Prior$nu}
if(nu < 1) {pandterm("invalid nu value")}
if(is.null(Prior$V)) {V=nu*diag(rep(1,nvar))} else {V=Prior$V}
if(sum(dim(V)==c(nvar,nvar)) !=2) pandterm("Invalid V in prior")
if(is.null(Prior$ADelta) ) {ADelta=.01*diag(nz)} else {ADelta=Prior$ADelta}
if(ncol(ADelta) != nz | nrow(ADelta) != nz) {pandterm("ADelta must be nz x nz")}
if(is.null(Prior$Deltabar) ) {Deltabar=matrix(rep(0,nz*nvar),ncol=nvar)} else {Deltabar=Prior$Deltabar}
}
#
# check on Mcmc
#
if(missing(Mcmc))
{pandterm("Requires Mcmc list argument")}
else
{
if(is.null(Mcmc$sbeta)) {sbeta=.2} else {sbeta=Mcmc$sbeta}
if(is.null(Mcmc$keep)) {keep=1} else {keep=Mcmc$keep}
if(is.null(Mcmc$R)) {pandterm("Requires R argument in Mcmc list")} else {R=Mcmc$R}
}
#
# print out problem
#
cat(" ",fill=TRUE)
cat("Attempting MCMC Inference for Hierarchical Binary Logit:",fill=TRUE)
cat(paste(" ",nvar," variables in X"),fill=TRUE)
cat(paste(" ",nz," variables in Z"),fill=TRUE)
cat(paste(" for ",nlgt," cross-sectional units"),fill=TRUE)
cat(" ",fill=TRUE)
cat("Prior Parms: ",fill=TRUE)
cat("nu =",nu,fill=TRUE)
cat("V ",fill=TRUE)
print(V)
cat("Deltabar",fill=TRUE)
print(Deltabar)
cat("ADelta",fill=TRUE)
print(ADelta)
cat(" ",fill=TRUE)
cat("MCMC Parms: ",fill=TRUE)
cat(paste("sbeta=",round(sbeta,3)," R= ",R," keep= ",keep),fill=TRUE)
cat("",fill=TRUE)
nlgt=length(lgtdata)
nvar=ncol(lgtdata[[1]]$X)
nz=ncol(Z)
#
# initialize storage for draws
#
Vbetadraw=matrix(double(floor(R/keep)*nvar*nvar),ncol=nvar*nvar)
betadraw=array(double(floor(R/keep)*nlgt*nvar),dim=c(nlgt,nvar,floor(R/keep)))
Deltadraw=matrix(double(floor(R/keep)*nvar*nz),ncol=nvar*nz)
oldbetas=matrix(double(nlgt*nvar),ncol=nvar)
oldVbeta=diag(nvar)
oldVbetai=diag(nvar)
oldDelta=matrix(double(nvar*nz),ncol=nvar)
betad = array(0,dim=c(nvar))
betan = array(0,dim=c(nvar))
reject = array(0,dim=c(R/keep))
llike=array(0,dim=c(R/keep))
itime=proc.time()[3]
cat("MCMC Iteration (est time to end - min)",fill=TRUE)
fsh()
for (j in 1:R) {
rej = 0
logl = 0
sV = sbeta*oldVbeta
root=t(chol(sV))
# Draw B-h|B-bar, V
for (i in 1:nlgt) {
betad = oldbetas[i,]
betan = betad + root%*%rnorm(nvar)
# data
lognew = loglike(lgtdata[[i]]$y,lgtdata[[i]]$X,betan)
logold = loglike(lgtdata[[i]]$y,lgtdata[[i]]$X,betad)
# heterogeneity
logknew = -.5*(t(betan)-Z[i,]%*%oldDelta) %*% oldVbetai %*% (betan-t(Z[i,]%*%oldDelta))
logkold = -.5*(t(betad)-Z[i,]%*%oldDelta) %*% oldVbetai %*% (betad-t(Z[i,]%*%oldDelta))
# MH step
alpha = exp(lognew + logknew - logold - logkold)
if(alpha=="NaN") alpha=-1
u = runif(n=1,min=0, max=1)
if(u < alpha) {
oldbetas[i,] = betan
logl = logl + lognew } else {
logl = logl + logold
rej = rej+1 }
}
# Draw B-bar and V as a multivariate regression
out=rmultireg(oldbetas,Z,Deltabar,ADelta,nu,V)
oldDelta=out$B
oldVbeta=out$Sigma
oldVbetai=chol2inv(chol(oldVbeta))
if((j%%100)==0)
{
ctime=proc.time()[3]
timetoend=((ctime-itime)/j)*(R-j)
cat(" ",j," (",round(timetoend/60,1),")",fill=TRUE)
fsh() }
mkeep=j/keep
if(mkeep*keep == (floor(mkeep)*keep))
{Deltadraw[mkeep,]=as.vector(oldDelta)
Vbetadraw[mkeep,]=as.vector(oldVbeta)
betadraw[,,mkeep]=oldbetas
llike[mkeep]=logl
reject[mkeep]=rej/nlgt
}
}
ctime=proc.time()[3]
cat(" Total Time Elapsed: ",round((ctime-itime)/60,2),fill=TRUE)
attributes(betadraw)$class=c("bayesm.hcoef")
attributes(Deltadraw)$class=c("bayesm.mat","mcmc")
attributes(Deltadraw)$mcpar=c(1,R,keep)
attributes(Vbetadraw)$class=c("bayesm.var","bayesm.mat","mcmc")
attributes(Vbetadraw)$mcpar=c(1,R,keep)
return(list(betadraw=betadraw,Vbetadraw=Vbetadraw,Deltadraw=Deltadraw,llike=llike,reject=reject))
}
|