1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
  
     | 
    
      \name{lndIWishart}
\alias{lndIWishart}
\concept{Inverted Wishart distribution}
\concept{density}
\title{Compute Log of Inverted Wishart Density}
\description{
  \code{lndIWishart} computes the log of an Inverted Wishart density.
}
\usage{lndIWishart(nu, V, IW)}
\arguments{
  \item{nu }{ d.f. parameter }
  \item{V  }{ "location" parameter  }
  \item{IW }{ ordinate for density evaluation }
}
\details{
  \eqn{Z} \eqn{\sim}{~} Inverted Wishart(nu,V). \cr
   In this parameterization, \eqn{E[Z] = 1/(nu-k-1) V}, where \eqn{V} is a \eqn{k x k} matrix \cr
  \code{lndIWishart} computes the complete log-density, including normalizing constants.
}
\value{Log density value}
\section{Warning}{
This routine is a utility routine that does \strong{not} check the input arguments for proper dimensions and type.
}
\author{Peter Rossi, Anderson School, UCLA, \email{perossichi@gmail.com}.}
\references{For further discussion, see Chapter 2, \emph{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch. }
\seealso{ \code{\link{rwishart}} }
\examples{
lndIWishart(5, diag(3), diag(3)+0.5)
}
\keyword{ distribution }
 
     |