1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
\name{rbayesBLP}
\alias{rbayesBLP}
\concept{bayes}
\concept{random coefficient logit}
\concept{BLP}
\concept{Metropolis Hasting}
\title{Bayesian Analysis of Random Coefficient Logit Models Using Aggregate Data}
\description{
\code{rbayesBLP} implements a hybrid MCMC algorithm for aggregate level sales data in a market with differentiated products. bayesm version 3.1-0 and prior verions contain an error when using instruments with this function; this will be fixed in a future version.
}
\usage{rbayesBLP(Data, Prior, Mcmc)}
\arguments{
\item{Data }{list(X, share, J, Z)}
\item{Prior}{list(sigmasqR, theta_hat, A, deltabar, Ad, nu0, s0_sq, VOmega)}
\item{Mcmc }{list(R, keep, nprint, H, initial_theta_bar, initial_r, initial_tau_sq, initial_Omega, initial_delta, s, cand_cov, tol)}
}
\value{
A list containing:
\item{thetabardraw }{\eqn{K x R/keep} matrix of random coefficient mean draws}
\item{Sigmadraw }{\eqn{K*K x R/keep} matrix of random coefficient variance draws}
\item{rdraw }{\eqn{K*K x R/keep} matrix of \eqn{r} draws (same information as in \code{Sigmadraw})}
\item{tausqdraw }{\eqn{R/keep x 1} vector of aggregate demand shock variance draws}
\item{Omegadraw }{\eqn{2*2 x R/keep} matrix of correlated endogenous shock variance draws}
\item{deltadraw }{\eqn{I x R/keep} matrix of endogenous structural equation coefficient draws}
\item{acceptrate }{scalor of acceptance rate of Metropolis-Hasting}
\item{s }{scale parameter used for Metropolis-Hasting}
\item{cand_cov }{var-cov matrix used for Metropolis-Hasting}
}
\section{Argument Details}{
\emph{\code{Data = list(X, share, J, Z)}} [\code{Z} optional]
\tabular{ll}{
\code{J: } \tab number of alternatives, excluding an outside option \cr
\code{X: } \tab \eqn{J*T x K} matrix (no outside option, which is normalized to 0). \cr
\code{ } \tab If IV is used, the last column of \code{X} is the endogeneous variable. \cr
\code{share: } \tab \eqn{J*T} vector (no outside option). \cr
\code{ } \tab Note that both the \code{share} vector and the \code{X} matrix are organized by the \eqn{jt} index. \cr
\code{ } \tab \eqn{j} varies faster than \eqn{t}, i.e. \eqn{(j=1,t=1), (j=2,t=1), ..., (j=J,T=1), ..., (j=J,t=T)} \cr
\code{Z: } \tab \eqn{J*T x I} matrix of instrumental variables (optional)
}
\emph{\code{Prior = list(sigmasqR, theta_hat, A, deltabar, Ad, nu0, s0_sq, VOmega)} [optional]}
\tabular{ll}{
\code{sigmasqR: } \tab \eqn{K*(K+1)/2} vector for \eqn{r} prior variance (def: diffuse prior for \eqn{\Sigma}) \cr
\code{theta_hat: } \tab \eqn{K} vector for \eqn{\theta_bar} prior mean (def: 0 vector) \cr
\code{A: } \tab \eqn{K x K} matrix for \eqn{\theta_bar} prior precision (def: \code{0.01*diag(K)}) \cr
\code{deltabar: } \tab \eqn{I} vector for \eqn{\delta} prior mean (def: 0 vector) \cr
\code{Ad: } \tab \eqn{I x I} matrix for \eqn{\delta} prior precision (def: \code{0.01*diag(I)}) \cr
\code{nu0: } \tab d.f. parameter for \eqn{\tau_sq} and \eqn{\Omega} prior (def: K+1) \cr
\code{s0_sq: } \tab scale parameter for \eqn{\tau_sq} prior (def: 1) \cr
\code{VOmega: } \tab \eqn{2 x 2} matrix parameter for \eqn{\Omega} prior (def: \code{matrix(c(1,0.5,0.5,1),2,2)})
}
\emph{\code{Mcmc = list(R, keep, nprint, H, initial_theta_bar, initial_r, initial_tau_sq, initial_Omega, initial_delta, s, cand_cov, tol)} [only \code{R} and \code{H} required]}
\tabular{ll}{
\code{R: } \tab number of MCMC draws \cr
\code{keep: } \tab MCMC thinning parameter -- keep every \code{keep}th draw (def: 1) \cr
\code{nprint: } \tab print the estimated time remaining for every \code{nprint}'th draw (def: 100, set to 0 for no print) \cr
\code{H: } \tab number of random draws used for Monte-Carlo integration \cr
\code{initial_theta_bar: } \tab initial value of \eqn{\theta_bar} (def: 0 vector) \cr
\code{initial_r: } \tab initial value of \eqn{r} (def: 0 vector) \cr
\code{initial_tau_sq: } \tab initial value of \eqn{\tau_sq} (def: 0.1) \cr
\code{initial_Omega: } \tab initial value of \eqn{\Omega} (def: \code{diag(2)}) \cr
\code{initial_delta: } \tab initial value of \eqn{\delta} (def: 0 vector) \cr
\code{s: } \tab scale parameter of Metropolis-Hasting increment (def: automatically tuned) \cr
\code{cand_cov: } \tab var-cov matrix of Metropolis-Hasting increment (def: automatically tuned) \cr
\code{tol: } \tab convergence tolerance for the contraction mapping (def: 1e-6)
}
}
\section{Model Details}{
\subsection{Model and Priors (without IV):}{
\eqn{u_ijt = X_jt \theta_i + \eta_jt + e_ijt}\cr
\eqn{e_ijt} \eqn{\sim}{~} type I Extreme Value (logit)\cr
\eqn{\theta_i} \eqn{\sim}{~} \eqn{N(\theta_bar, \Sigma)}\cr
\eqn{\eta_jt} \eqn{\sim}{~} \eqn{N(0, \tau_sq)}\cr
This structure implies a logit model for each consumer (\eqn{\theta}).
Aggregate shares (\code{share}) are produced by integrating this consumer level
logit model over the assumed normal distribution of \eqn{\theta}.
\eqn{r} \eqn{\sim}{~} \eqn{N(0, diag(sigmasqR))}\cr
\eqn{\theta_bar} \eqn{\sim}{~} \eqn{N(\theta_hat, A^-1)}\cr
\eqn{\tau_sq} \eqn{\sim}{~} \eqn{nu0*s0_sq / \chi^2 (nu0)}\cr
Note: we observe the aggregate level market share, not individual level choices.\cr
Note: \eqn{r} is the vector of nonzero elements of cholesky root of \eqn{\Sigma}.
Instead of \eqn{\Sigma} we draw \eqn{r}, which is one-to-one correspondence with the positive-definite \eqn{\Sigma}.
}
\subsection{Model and Priors (with IV):}{
\eqn{u_ijt = X_jt \theta_i + \eta_jt + e_ijt}\cr
\eqn{e_ijt} \eqn{\sim}{~} type I Extreme Value (logit)\cr
\eqn{\theta_i} \eqn{\sim}{~} \eqn{N(\theta_bar, \Sigma)}\cr
\eqn{X_jt = [X_exo_jt, X_endo_jt]}\cr
\eqn{X_endo_jt = Z_jt \delta_jt + \zeta_jt}\cr
\eqn{vec(\zeta_jt, \eta_jt)} \eqn{\sim}{~} \eqn{N(0, \Omega)}\cr
\eqn{r} \eqn{\sim}{~} \eqn{N(0, diag(sigmasqR))}\cr
\eqn{\theta_bar} \eqn{\sim}{~} \eqn{N(\theta_hat, A^-1)}\cr
\eqn{\delta} \eqn{\sim}{~} \eqn{N(deltabar, Ad^-1)}\cr
\eqn{\Omega} \eqn{\sim}{~} \eqn{IW(nu0, VOmega)}\cr
}
}
\section{MCMC and Tuning Details:}{
\subsection{MCMC Algorithm:}{
Step 1 (\eqn{\Sigma}):\cr
Given \eqn{\theta_bar} and \eqn{\tau_sq}, draw \eqn{r} via Metropolis-Hasting.\cr
Covert the drawn \eqn{r} to \eqn{\Sigma}.\cr
Note: if user does not specify the Metropolis-Hasting increment parameters
(\code{s} and \code{cand_cov}), \code{rbayesBLP} automatically tunes the parameters.
Step 2 without IV (\eqn{\theta_bar}, \eqn{\tau_sq}):\cr
Given \eqn{\Sigma}, draw \eqn{\theta_bar} and \eqn{\tau_sq} via Gibbs sampler.\cr
Step 2 with IV (\eqn{\theta_bar}, \eqn{\delta}, \eqn{\Omega}):\cr
Given \eqn{\Sigma}, draw \eqn{\theta_bar}, \eqn{\delta}, and \eqn{\Omega} via IV Gibbs sampler.\cr
}
\subsection{Tuning Metropolis-Hastings algorithm:}{
r_cand = r_old + s*N(0,cand_cov)\cr
Fix the candidate covariance matrix as cand_cov0 = diag(rep(0.1, K), rep(1, K*(K-1)/2)).\cr
Start from s0 = 2.38/sqrt(dim(r))\cr
Repeat\{\cr
Run 500 MCMC chain.\cr
If acceptance rate < 30\% => update s1 = s0/5.\cr
If acceptance rate > 50\% => update s1 = s0*3.\cr
(Store r draws if acceptance rate is 20~80\%.)\cr
s0 = s1\cr
\} until acceptance rate is 30~50\%
Scale matrix C = s1*sqrt(cand_cov0)\cr
Correlation matrix R = Corr(r draws)\cr
Use C*R*C as s^2*cand_cov.
}
}
\references{For further discussion, see \emph{Bayesian Analysis of Random Coefficient Logit Models Using Aggregate Data} by Jiang, Manchanda, and Rossi, \emph{Journal of Econometrics}, 2009. \cr
}
\author{Peter Rossi and K. Kim, Anderson School, UCLA, \email{perossichi@gmail.com}.}
\examples{
if(nchar(Sys.getenv("LONG_TEST")) != 0) {
## Simulate aggregate level data
simulData <- function(para, others, Hbatch) {
# Hbatch does the integration for computing market shares
# in batches of size Hbatch
## parameters
theta_bar <- para$theta_bar
Sigma <- para$Sigma
tau_sq <- para$tau_sq
T <- others$T
J <- others$J
p <- others$p
H <- others$H
K <- J + p
## build X
X <- matrix(runif(T*J*p), T*J, p)
inter <- NULL
for (t in 1:T) { inter <- rbind(inter, diag(J)) }
X <- cbind(inter, X)
## draw eta ~ N(0, tau_sq)
eta <- rnorm(T*J)*sqrt(tau_sq)
X <- cbind(X, eta)
share <- rep(0, J*T)
for (HH in 1:(H/Hbatch)){
## draw theta ~ N(theta_bar, Sigma)
cho <- chol(Sigma)
theta <- matrix(rnorm(K*Hbatch), nrow=K, ncol=Hbatch)
theta <- t(cho)\%*\%theta + theta_bar
## utility
V <- X\%*\%rbind(theta, 1)
expV <- exp(V)
expSum <- matrix(colSums(matrix(expV, J, T*Hbatch)), T, Hbatch)
expSum <- expSum \%x\% matrix(1, J, 1)
choiceProb <- expV / (1 + expSum)
share <- share + rowSums(choiceProb) / H
}
## the last K+1'th column is eta, which is unobservable.
X <- X[,c(1:K)]
return (list(X=X, share=share))
}
## true parameter
theta_bar_true <- c(-2, -3, -4, -5)
Sigma_true <- rbind(c(3,2,1.5,1), c(2,4,-1,1.5), c(1.5,-1,4,-0.5), c(1,1.5,-0.5,3))
cho <- chol(Sigma_true)
r_true <- c(log(diag(cho)), cho[1,2:4], cho[2,3:4], cho[3,4])
tau_sq_true <- 1
## simulate data
set.seed(66)
T <- 300
J <- 3
p <- 1
K <- 4
H <- 1000000
Hbatch <- 5000
dat <- simulData(para=list(theta_bar=theta_bar_true, Sigma=Sigma_true, tau_sq=tau_sq_true),
others=list(T=T, J=J, p=p, H=H), Hbatch)
X <- dat$X
share <- dat$share
## Mcmc run
R <- 2000
H <- 50
Data1 <- list(X=X, share=share, J=J)
Mcmc1 <- list(R=R, H=H, nprint=0)
set.seed(66)
out <- rbayesBLP(Data=Data1, Mcmc=Mcmc1)
## acceptance rate
out$acceptrate
## summary of draws
summary(out$thetabardraw)
summary(out$Sigmadraw)
summary(out$tausqdraw)
### plotting draws
plot(out$thetabardraw)
plot(out$Sigmadraw)
plot(out$tausqdraw)
}
}
\keyword{models}
|