1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mcmc-distributions.R
\name{MCMC-distributions}
\alias{MCMC-distributions}
\alias{mcmc_hist}
\alias{mcmc_dens}
\alias{mcmc_hist_by_chain}
\alias{mcmc_dens_overlay}
\alias{mcmc_dens_chains}
\alias{mcmc_dens_chains_data}
\alias{mcmc_violin}
\title{Histograms and kernel density plots of MCMC draws}
\usage{
mcmc_hist(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE,
alpha = 1
)
mcmc_dens(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
trim = FALSE,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL,
alpha = 1
)
mcmc_hist_by_chain(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
freq = TRUE,
alpha = 1
)
mcmc_dens_overlay(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
color_chains = TRUE,
trim = FALSE,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL
)
mcmc_dens_chains(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
color_chains = TRUE,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL
)
mcmc_dens_chains_data(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL
)
mcmc_violin(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
probs = c(0.1, 0.5, 0.9)
)
}
\arguments{
\item{x}{An object containing MCMC draws:
\itemize{
\item A 3-D array, matrix, list of matrices, or data frame. The \link{MCMC-overview}
page provides details on how to specify each these.
\item A \code{draws} object from the \pkg{\link{posterior}} package (e.g.,
\code{draws_array}, \code{draws_rvars}, etc.).
\item An object with an \code{as.array()} method that returns the same kind of 3-D
array described on the \link{MCMC-overview} page.
}}
\item{pars}{An optional character vector of parameter names. If neither
\code{pars} nor \code{regex_pars} is specified then the default is to use \emph{all}
parameters. As of version \verb{1.7.0}, \strong{bayesplot} also supports 'tidy'
parameter selection by specifying \code{pars = vars(...)}, where \code{...} is
specified the same way as in \link[dplyr:select]{dplyr::select(...)} and
similar functions. Examples of using \code{pars} in this way can be found on the
\link[=tidy-params]{Tidy parameter selection} page.}
\item{regex_pars}{An optional \link[base:grep]{regular expression} to use for
parameter selection. Can be specified instead of \code{pars} or in addition to
\code{pars}. When using \code{pars} for tidy parameter selection, the \code{regex_pars}
argument is ignored since \link[tidyselect:language]{select helpers}
perform a similar function.}
\item{transformations}{Optionally, transformations to apply to parameters
before plotting. If \code{transformations} is a function or a single string
naming a function then that function will be used to transform all
parameters. To apply transformations to particular parameters, the
\code{transformations} argument can be a named list with length equal to
the number of parameters to be transformed. Currently only univariate
transformations of scalar parameters can be specified (multivariate
transformations will be implemented in a future release). If
\code{transformations} is a list, the name of each list element should be a
parameter name and the content of each list element should be a function
(or any item to match as a function via \code{\link[=match.fun]{match.fun()}}, e.g. a
string naming a function). If a function is specified by its name as a
string (e.g. \code{"log"}), then it can be used to construct a new
parameter label for the appropriate parameter (e.g. \code{"log(sigma)"}).
If a function itself is specified
(e.g. \code{log} or \code{function(x) log(x)})
then \code{"t"} is used in the new parameter label to indicate that the
parameter is transformed (e.g. \code{"t(sigma)"}).
Note: due to partial argument matching \code{transformations} can be
abbreviated for convenience in interactive use (e.g., \code{transform}).}
\item{...}{Currently ignored.}
\item{facet_args}{A named list of arguments (other than \code{facets}) passed
to \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}} or \code{\link[ggplot2:facet_grid]{ggplot2::facet_grid()}}
to control faceting. Note: if \code{scales} is not included in \code{facet_args}
then \strong{bayesplot} may use \code{scales="free"} as the default (depending
on the plot) instead of the \strong{ggplot2} default of \code{scales="fixed"}.}
\item{binwidth}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} to override
the default binwidth.}
\item{bins}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} to override
the default binwidth.}
\item{breaks}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} as an
alternative to \code{binwidth}.}
\item{freq}{For histograms, \code{freq=TRUE} (the default) puts count on the
y-axis. Setting \code{freq=FALSE} puts density on the y-axis. (For many
plots the y-axis text is off by default. To view the count or density
labels on the y-axis see the \code{\link[=yaxis_text]{yaxis_text()}} convenience
function.)}
\item{alpha}{Passed to the geom to control the transparency.}
\item{trim}{A logical scalar passed to \code{\link[ggplot2:geom_density]{ggplot2::geom_density()}}.}
\item{bw, adjust, kernel, n_dens}{Optional arguments passed to
\code{\link[stats:density]{stats::density()}} to override default kernel density estimation
parameters. \code{n_dens} defaults to \code{1024}.}
\item{color_chains}{Option for whether to separately color chains.}
\item{probs}{A numeric vector passed to \code{\link[ggplot2:geom_violin]{ggplot2::geom_violin()}}'s
\code{draw_quantiles} argument to specify at which quantiles to draw
horizontal lines. Set to \code{NULL} to remove the lines.}
}
\value{
A ggplot object that can be further customized using the \strong{ggplot2} package.
}
\description{
Various types of histograms and kernel density plots of MCMC draws. See the
\strong{Plot Descriptions} section, below, for details.
}
\section{Plot Descriptions}{
\describe{
\item{\code{mcmc_hist()}}{
Histograms of posterior draws with all chains merged.
}
\item{\code{mcmc_dens()}}{
Kernel density plots of posterior draws with all chains merged.
}
\item{\code{mcmc_hist_by_chain()}}{
Histograms of posterior draws with chains separated via faceting.
}
\item{\code{mcmc_dens_overlay()}}{
Kernel density plots of posterior draws with chains separated but
overlaid on a single plot.
}
\item{\code{mcmc_violin()}}{
The density estimate of each chain is plotted as a violin with
horizontal lines at notable quantiles.
}
\item{\code{mcmc_dens_chains()}}{
Ridgeline kernel density plots of posterior draws with chains separated
but overlaid on a single plot. In \code{mcmc_dens_overlay()} parameters
appear in separate facets; in \code{mcmc_dens_chains()} they appear in the
same panel and can overlap vertically.
}
}
}
\examples{
set.seed(9262017)
# some parameter draws to use for demonstration
x <- example_mcmc_draws()
dim(x)
dimnames(x)
##################
### Histograms ###
##################
# histograms of all parameters
color_scheme_set("brightblue")
mcmc_hist(x)
# histograms of some parameters
color_scheme_set("pink")
mcmc_hist(x, pars = c("alpha", "beta[2]"))
\donttest{
mcmc_hist(x, pars = "sigma", regex_pars = "beta")
}
# example of using 'transformations' argument to plot log(sigma),
# and parsing facet labels (e.g. to get greek letters for parameters)
mcmc_hist(x, transformations = list(sigma = "log"),
facet_args = list(labeller = ggplot2::label_parsed)) +
facet_text(size = 15)
\donttest{
# instead of list(sigma = "log"), you could specify the transformation as
# list(sigma = log) or list(sigma = function(x) log(x)), but then the
# label for the transformed sigma is 't(sigma)' instead of 'log(sigma)'
mcmc_hist(x, transformations = list(sigma = log))
# separate histograms by chain
color_scheme_set("pink")
mcmc_hist_by_chain(x, regex_pars = "beta")
}
#################
### Densities ###
#################
mcmc_dens(x, pars = c("sigma", "beta[2]"),
facet_args = list(nrow = 2))
\donttest{
# separate and overlay chains
color_scheme_set("mix-teal-pink")
mcmc_dens_overlay(x, pars = c("sigma", "beta[2]"),
facet_args = list(nrow = 2)) +
facet_text(size = 14)
x2 <- example_mcmc_draws(params = 6)
mcmc_dens_chains(x2, pars = c("beta[1]", "beta[2]", "beta[3]"))
}
# separate chains as violin plots
color_scheme_set("green")
mcmc_violin(x) + panel_bg(color = "gray20", size = 2, fill = "gray30")
}
\seealso{
Other MCMC:
\code{\link{MCMC-combos}},
\code{\link{MCMC-diagnostics}},
\code{\link{MCMC-intervals}},
\code{\link{MCMC-nuts}},
\code{\link{MCMC-overview}},
\code{\link{MCMC-parcoord}},
\code{\link{MCMC-recover}},
\code{\link{MCMC-scatterplots}},
\code{\link{MCMC-traces}}
}
\concept{MCMC}
|