File: MCMC-intervals.Rd

package info (click to toggle)
r-cran-bayesplot 1.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,080 kB
  • sloc: sh: 13; makefile: 2
file content (359 lines) | stat: -rw-r--r-- 10,989 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mcmc-intervals.R
\name{MCMC-intervals}
\alias{MCMC-intervals}
\alias{mcmc_intervals}
\alias{mcmc_areas}
\alias{mcmc_areas_ridges}
\alias{mcmc_intervals_data}
\alias{mcmc_areas_data}
\alias{mcmc_areas_ridges_data}
\title{Plot interval estimates from MCMC draws}
\usage{
mcmc_intervals(
  x,
  pars = character(),
  regex_pars = character(),
  transformations = list(),
  ...,
  prob = 0.5,
  prob_outer = 0.9,
  point_est = c("median", "mean", "none"),
  outer_size = 0.5,
  inner_size = 2,
  point_size = 4,
  rhat = numeric()
)

mcmc_areas(
  x,
  pars = character(),
  regex_pars = character(),
  transformations = list(),
  ...,
  area_method = c("equal area", "equal height", "scaled height"),
  prob = 0.5,
  prob_outer = 1,
  point_est = c("median", "mean", "none"),
  rhat = numeric(),
  border_size = NULL,
  bw = NULL,
  adjust = NULL,
  kernel = NULL,
  n_dens = NULL
)

mcmc_areas_ridges(
  x,
  pars = character(),
  regex_pars = character(),
  transformations = list(),
  ...,
  prob_outer = 1,
  prob = 1,
  border_size = NULL,
  bw = NULL,
  adjust = NULL,
  kernel = NULL,
  n_dens = NULL
)

mcmc_intervals_data(
  x,
  pars = character(),
  regex_pars = character(),
  transformations = list(),
  ...,
  prob = 0.5,
  prob_outer = 0.9,
  point_est = c("median", "mean", "none"),
  rhat = numeric()
)

mcmc_areas_data(
  x,
  pars = character(),
  regex_pars = character(),
  transformations = list(),
  ...,
  prob = 0.5,
  prob_outer = 1,
  point_est = c("median", "mean", "none"),
  rhat = numeric(),
  bw = NULL,
  adjust = NULL,
  kernel = NULL,
  n_dens = NULL
)

mcmc_areas_ridges_data(
  x,
  pars = character(),
  regex_pars = character(),
  transformations = list(),
  ...,
  prob_outer = 1,
  prob = 1,
  bw = NULL,
  adjust = NULL,
  kernel = NULL,
  n_dens = NULL
)
}
\arguments{
\item{x}{An object containing MCMC draws:
\itemize{
\item A 3-D array, matrix, list of matrices, or data frame. The \link{MCMC-overview}
page provides details on how to specify each these.
\item A \code{draws} object from the \pkg{\link{posterior}} package (e.g.,
\code{draws_array}, \code{draws_rvars}, etc.).
\item An object with an \code{as.array()} method that returns the same kind of 3-D
array described on the \link{MCMC-overview} page.
}}

\item{pars}{An optional character vector of parameter names. If neither
\code{pars} nor \code{regex_pars} is specified then the default is to use \emph{all}
parameters. As of version \verb{1.7.0}, \strong{bayesplot} also supports 'tidy'
parameter selection by specifying \code{pars = vars(...)}, where \code{...} is
specified the same way as in \link[dplyr:select]{dplyr::select(...)} and
similar functions. Examples of using \code{pars} in this way can be found on the
\link[=tidy-params]{Tidy parameter selection} page.}

\item{regex_pars}{An optional \link[base:grep]{regular expression} to use for
parameter selection. Can be specified instead of \code{pars} or in addition to
\code{pars}. When using \code{pars} for tidy parameter selection, the \code{regex_pars}
argument is ignored since \link[tidyselect:language]{select helpers}
perform a similar function.}

\item{transformations}{Optionally, transformations to apply to parameters
before plotting. If \code{transformations} is a function or a single string
naming a function then that function will be used to transform all
parameters. To apply transformations to particular parameters, the
\code{transformations} argument can be a named list with length equal to
the number of parameters to be transformed. Currently only univariate
transformations of scalar parameters can be specified (multivariate
transformations will be implemented in a future release). If
\code{transformations} is a list, the name of each list element should be a
parameter name and the content of each list element should be a function
(or any item to match as a function via \code{\link[=match.fun]{match.fun()}}, e.g. a
string naming a function). If a function is specified by its name as a
string (e.g. \code{"log"}), then it can be used to construct a new
parameter label for the appropriate parameter (e.g. \code{"log(sigma)"}).
If a function itself is specified
(e.g. \code{log} or \code{function(x) log(x)})
then \code{"t"} is used in the new parameter label to indicate that the
parameter is transformed (e.g. \code{"t(sigma)"}).

Note: due to partial argument matching \code{transformations} can be
abbreviated for convenience in interactive use (e.g., \code{transform}).}

\item{...}{Currently unused.}

\item{prob}{The probability mass to include in the inner interval (for
\code{mcmc_intervals()}) or in the shaded region (for \code{mcmc_areas()}). The
default is \code{0.5} (50\% interval) and \code{1} for \code{mcmc_areas_ridges()}.}

\item{prob_outer}{The probability mass to include in the outer interval. The
default is \code{0.9} for \code{mcmc_intervals()} (90\% interval) and
\code{1} for \code{mcmc_areas()} and for \code{mcmc_areas_ridges()}.}

\item{point_est}{The point estimate to show. Either \code{"median"} (the
default), \code{"mean"}, or \code{"none"}.}

\item{inner_size, outer_size}{For \code{mcmc_intervals()}, the size of
the inner and interval segments, respectively.}

\item{point_size}{For \code{mcmc_intervals()}, the size of point estimate.}

\item{rhat}{An optional numeric vector of R-hat estimates, with one element
per parameter included in \code{x}. If \code{rhat} is provided, the intervals/areas
and point estimates in the resulting plot are colored based on R-hat value.
See \code{\link[=rhat]{rhat()}} for methods for extracting R-hat estimates.}

\item{area_method}{How to constrain the areas in \code{mcmc_areas()}. The
default is \code{"equal area"}, setting the density curves to have the same
area. With \code{"equal height"}, the curves are scaled so that the highest
points across the curves are the same height. The method \code{"scaled height"} tries a compromise between to the two: the heights from
\code{"equal height"} are scaled using \code{height*sqrt(height)}}

\item{border_size}{For \code{mcmc_areas()} and \code{mcmc_areas_ridges()}, the size of
the ridgelines.}

\item{bw, adjust, kernel, n_dens}{Optional arguments passed to
\code{\link[stats:density]{stats::density()}} to override default kernel density estimation
parameters. \code{n_dens} defaults to \code{1024}.}
}
\value{
The plotting functions return a ggplot object that can be further
customized using the \strong{ggplot2} package. The functions with suffix
\verb{_data()} return the data that would have been drawn by the plotting
function.
}
\description{
Plot central (quantile-based) posterior interval estimates from MCMC draws.
See the \strong{Plot Descriptions} section, below, for details.
}
\section{Plot Descriptions}{

\describe{
\item{\code{mcmc_intervals()}}{
Plots of uncertainty intervals computed from posterior draws with all
chains merged.
}
\item{\code{mcmc_areas()}}{
Density plots computed from posterior draws with all chains merged,
with uncertainty intervals shown as shaded areas under the curves.
}
\item{\code{mcmc_areas_ridges()}}{
Density plot, as in \code{mcmc_areas()}, but drawn with overlapping
ridgelines. This plot provides a compact display of (hierarchically)
related distributions.
}
}
}

\examples{
set.seed(9262017)

# load ggplot2 to use its functions to modify our plots
library(ggplot2)

# some parameter draws to use for demonstration
x <- example_mcmc_draws(params = 6)
dim(x)
dimnames(x)

color_scheme_set("brightblue")
mcmc_intervals(x)
mcmc_intervals(x, pars = c("beta[1]", "beta[2]"))
mcmc_areas(x, regex_pars = "beta\\\\[[1-3]\\\\]",  prob = 0.8) +
 labs(
   title = "Posterior distributions",
   subtitle = "with medians and 80\% intervals"
 )

color_scheme_set("red")
p <- mcmc_areas(
   x,
   pars = c("alpha", "beta[4]"),
   prob = 2/3,
   prob_outer = 0.9,
   point_est = "mean",
   border_size = 1.5 # make the ridgelines fatter
)
plot(p)

\donttest{
# control spacing at top and bottom of plot
# see ?ggplot2::expansion
p + scale_y_discrete(
  limits = c("beta[4]", "alpha"),
  expand = expansion(add = c(1, 2))
)
p + scale_y_discrete(
  limits = c("beta[4]", "alpha"),
  expand = expansion(add = c(.1, .3))
)

# relabel parameters
p + scale_y_discrete(
  labels = c("alpha" = "param label 1",
             "beta[4]" = "param label 2")
)

# relabel parameters and define the order
p + scale_y_discrete(
  labels = c("alpha" = "param label 1",
             "beta[4]" = "param label 2"),
  limits = c("beta[4]", "alpha")
)

# color by rhat value
color_scheme_set("blue")
fake_rhat_values <- c(1, 1.07, 1.3, 1.01, 1.15, 1.005)
mcmc_intervals(x, rhat = fake_rhat_values)

# get the dataframe that is used in the plotting functions
mcmc_intervals_data(x)
mcmc_intervals_data(x, rhat = fake_rhat_values)
mcmc_areas_data(x, pars = "alpha")

color_scheme_set("gray")
p <- mcmc_areas(x, pars = c("alpha", "beta[4]"), rhat = c(1, 1.1))
p + legend_move("bottom")
p + legend_move("none") # or p + legend_none()

}

# Different area calculations
b3 <- c("beta[1]", "beta[2]", "beta[3]")

mcmc_areas(x, pars = b3, area_method = "equal area") +
  labs(
    title = "Curves have same area",
    subtitle = "A wide, uncertain interval is spread thin when areas are equal"
   )

mcmc_areas(x, pars = b3, area_method = "equal height") +
  labs(
    title = "Curves have same maximum height",
    subtitle = "Local curvature is clearer but more uncertain curves use more area"
  )

mcmc_areas(x, pars = b3, area_method = "scaled height") +
  labs(
    title = "Same maximum heights but heights scaled by square-root",
    subtitle = "Compromise: Local curvature is accentuated and less area is used"
   )

\donttest{
# apply transformations
mcmc_intervals(
  x,
  pars = c("beta[2]", "sigma"),
  transformations = list("sigma" = "log", "beta[2]" = function(x) x + 3)
)

# apply same transformation to all selected parameters
mcmc_intervals(x, regex_pars = "beta", transformations = "exp")
}

\dontrun{
# example using fitted model from rstanarm package
library(rstanarm)
fit <- stan_glm(
 mpg ~ 0 + wt + factor(cyl),
 data = mtcars,
 iter = 500,
 refresh = 0
)
x <- as.matrix(fit)

color_scheme_set("teal")
mcmc_intervals(x, point_est = "mean", prob = 0.8, prob_outer = 0.95)
mcmc_areas(x, regex_pars = "cyl", bw = "SJ",
           rhat = rhat(fit, regex_pars = "cyl"))
}

\dontrun{
# Example of hierarchically related parameters
# plotted with ridgelines
m <- shinystan::eight_schools@posterior_sample
mcmc_areas_ridges(m, pars = "mu", regex_pars = "theta", border_size = 0.75) +
  ggtitle("Treatment effect on eight schools (Rubin, 1981)")
}

}
\seealso{
Other MCMC: 
\code{\link{MCMC-combos}},
\code{\link{MCMC-diagnostics}},
\code{\link{MCMC-distributions}},
\code{\link{MCMC-nuts}},
\code{\link{MCMC-overview}},
\code{\link{MCMC-parcoord}},
\code{\link{MCMC-recover}},
\code{\link{MCMC-scatterplots}},
\code{\link{MCMC-traces}}
}
\concept{MCMC}