1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mcmc-diagnostics-nuts.R
\name{MCMC-nuts}
\alias{MCMC-nuts}
\alias{NUTS}
\alias{mcmc_nuts_acceptance}
\alias{mcmc_nuts_divergence}
\alias{mcmc_nuts_stepsize}
\alias{mcmc_nuts_treedepth}
\alias{mcmc_nuts_energy}
\title{Diagnostic plots for the No-U-Turn-Sampler (NUTS)}
\usage{
mcmc_nuts_acceptance(
x,
lp,
chain = NULL,
...,
binwidth = NULL,
bins = NULL,
breaks = NULL
)
mcmc_nuts_divergence(x, lp, chain = NULL, ...)
mcmc_nuts_stepsize(x, lp, chain = NULL, ...)
mcmc_nuts_treedepth(x, lp, chain = NULL, ...)
mcmc_nuts_energy(
x,
...,
binwidth = NULL,
bins = NULL,
breaks = NULL,
alpha = 0.5,
merge_chains = FALSE
)
}
\arguments{
\item{x}{A molten data frame of NUTS sampler parameters, either created by
\code{\link[=nuts_params]{nuts_params()}} or in the same form as the object returned by
\code{\link[=nuts_params]{nuts_params()}}.}
\item{lp}{A molten data frame of draws of the log-posterior or, more
commonly, of a quantity equal to the log-posterior up to a constant.
\code{lp} should either be created via \code{\link[=log_posterior]{log_posterior()}} or be an
object with the same form as the object returned by
\code{\link[=log_posterior]{log_posterior()}}.}
\item{chain}{A positive integer for selecting a particular chain. The default
(\code{NULL}) is to merge the chains before plotting. If \code{chain = k}
then the plot for chain \code{k} is overlaid (in a darker shade but with
transparency) on top of the plot for all chains. The \code{chain} argument
is not used by \code{mcmc_nuts_energy()}.}
\item{...}{Currently ignored.}
\item{binwidth}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} to override
the default binwidth.}
\item{bins}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} to override
the default binwidth.}
\item{breaks}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} as an
alternative to \code{binwidth}.}
\item{alpha}{For \code{mcmc_nuts_energy()} only, the transparency (alpha) level
in \verb{[0,1]} used for the overlaid histogram.}
\item{merge_chains}{For \code{mcmc_nuts_energy()} only, should all chains be
merged or displayed separately? The default is \code{FALSE}, i.e., to show
the chains separately.}
}
\value{
A gtable object (the result of calling
\code{\link[gridExtra:arrangeGrob]{gridExtra::arrangeGrob()}}) created from several ggplot objects,
except for \code{mcmc_nuts_energy()}, which returns a ggplot object.
}
\description{
Diagnostic plots for the No-U-Turn-Sampler (NUTS), the default MCMC algorithm
used by \href{https://mc-stan.org}{Stan}. See the \strong{Plot Descriptions} section,
below.
}
\section{Quick Definitions}{
For more details see Stan Development Team (2016) and Betancourt (2017).
\itemize{
\item \code{accept_stat__}: the average acceptance probabilities of all
possible samples in the proposed tree.
\item \code{divergent__}: the number of leapfrog transitions with diverging
error. Because NUTS terminates at the first divergence this will be either
0 or 1 for each iteration.
\item \code{stepsize__}: the step size used by NUTS in its Hamiltonian
simulation.
\item \code{treedepth__}: the depth of tree used by NUTS, which is the log
(base 2) of the number of leapfrog steps taken during the Hamiltonian
simulation.
\item \code{energy__}: the value of the Hamiltonian (up to an additive
constant) at each iteration.
}
}
\section{Plot Descriptions}{
\describe{
\item{\code{mcmc_nuts_acceptance()}}{
Three plots:
\itemize{
\item Histogram of \code{accept_stat__} with vertical lines indicating the
mean (solid line) and median (dashed line).
\item Histogram of \code{lp__} with vertical
lines indicating the mean (solid line) and median (dashed line).
\item Scatterplot of \code{accept_stat__} vs \code{lp__}.
}
}
\item{\code{mcmc_nuts_divergence()}}{
Two plots:
\itemize{
\item Violin plots of \code{lp__|divergent__=1} and \code{lp__|divergent__=0}.
\item Violin plots of \code{accept_stat__|divergent__=1} and
\code{accept_stat__|divergent__=0}.
}
}
\item{\code{mcmc_nuts_stepsize()}}{
Two plots:
\itemize{
\item Violin plots of \code{lp__} by chain ordered by \code{stepsize__} value.
\item Violin plots of \code{accept_stat__} by chain ordered by \code{stepsize__} value.
}
}
\item{\code{mcmc_nuts_treedepth()}}{
Three plots:
\itemize{
\item Violin plots of \code{lp__} by value of \code{treedepth__}.
\item Violin plots of \code{accept_stat__} by value of \code{treedepth__}.
\item Histogram of \code{treedepth__}.
}
}
\item{\code{mcmc_nuts_energy()}}{
Overlaid histograms showing \code{energy__} vs the change in
\code{energy__}. See Betancourt (2016) for details.
}
}
}
\examples{
\dontrun{
library(ggplot2)
library(rstanarm)
fit <- stan_glm(mpg ~ wt + am, data = mtcars, iter = 1000, refresh = 0)
np <- nuts_params(fit)
lp <- log_posterior(fit)
color_scheme_set("brightblue")
mcmc_nuts_acceptance(np, lp)
mcmc_nuts_acceptance(np, lp, chain = 2)
mcmc_nuts_divergence(np, lp)
mcmc_nuts_stepsize(np, lp)
mcmc_nuts_treedepth(np, lp)
color_scheme_set("red")
mcmc_nuts_energy(np)
mcmc_nuts_energy(np, merge_chains = TRUE, binwidth = .15)
mcmc_nuts_energy(np) +
facet_wrap(vars(Chain), nrow = 1) +
coord_fixed(ratio = 150) +
ggtitle("NUTS Energy Diagnostic")
}
}
\references{
Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo.
\url{https://arxiv.org/abs/1701.02434}
Betancourt, M. and Girolami, M. (2013). Hamiltonian Monte Carlo for
hierarchical models. \url{https://arxiv.org/abs/1312.0906}
Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn Sampler:
adaptively setting path lengths in Hamiltonian Monte Carlo.
\emph{Journal of Machine Learning Research}. 15:1593--1623.
Stan Development Team.
\emph{Stan Modeling Language Users Guide and Reference Manual.}
\url{https://mc-stan.org/users/documentation/}
}
\seealso{
\itemize{
\item The \href{https://mc-stan.org/bayesplot/articles/visual-mcmc-diagnostics.html}{Visual MCMC Diagnostics}
vignette.
\item Several other plotting functions are not NUTS-specific but take optional
extra arguments if the model was fit using NUTS:
\itemize{
\item \code{\link[=mcmc_trace]{mcmc_trace()}}: show divergences as tick marks below the
trace plot.
\item \code{\link[=mcmc_parcoord]{mcmc_parcoord()}}: change the color/size/transparency of lines
corresponding to divergences.
\item \code{\link[=mcmc_scatter]{mcmc_scatter()}}: change the color/size/shape of points
corresponding to divergences.
\item \code{\link[=mcmc_pairs]{mcmc_pairs()}}: change the color/size/shape of points
corresponding divergences and/or max treedepth saturation.
}
}
Other MCMC:
\code{\link{MCMC-combos}},
\code{\link{MCMC-diagnostics}},
\code{\link{MCMC-distributions}},
\code{\link{MCMC-intervals}},
\code{\link{MCMC-overview}},
\code{\link{MCMC-parcoord}},
\code{\link{MCMC-recover}},
\code{\link{MCMC-scatterplots}},
\code{\link{MCMC-traces}}
}
\concept{MCMC}
|