1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mcmc-scatterplots.R
\name{MCMC-scatterplots}
\alias{MCMC-scatterplots}
\alias{mcmc_scatter}
\alias{mcmc_hex}
\alias{mcmc_pairs}
\alias{scatter_style_np}
\alias{pairs_style_np}
\alias{pairs_condition}
\title{Scatterplots of MCMC draws}
\usage{
mcmc_scatter(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
size = 2.5,
alpha = 0.8,
np = NULL,
np_style = scatter_style_np()
)
mcmc_hex(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
bins = 30,
binwidth = NULL
)
mcmc_pairs(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
diag_fun = c("hist", "dens"),
off_diag_fun = c("scatter", "hex"),
diag_args = list(),
off_diag_args = list(),
condition = pairs_condition(),
lp = NULL,
np = NULL,
np_style = pairs_style_np(),
max_treedepth = NULL,
grid_args = list(),
save_gg_objects = TRUE
)
scatter_style_np(
div_color = "red",
div_shape = 16,
div_size = 2.5,
div_alpha = 1
)
pairs_style_np(
div_color = "red",
div_shape = 4,
div_size = 1,
div_alpha = 1,
td_color = "yellow2",
td_shape = 3,
td_size = 1,
td_alpha = 1
)
pairs_condition(chains = NULL, draws = NULL, nuts = NULL)
}
\arguments{
\item{x}{An object containing MCMC draws:
\itemize{
\item A 3-D array, matrix, list of matrices, or data frame. The \link{MCMC-overview}
page provides details on how to specify each these.
\item A \code{draws} object from the \pkg{\link{posterior}} package (e.g.,
\code{draws_array}, \code{draws_rvars}, etc.).
\item An object with an \code{as.array()} method that returns the same kind of 3-D
array described on the \link{MCMC-overview} page.
}}
\item{pars}{An optional character vector of parameter names. If neither
\code{pars} nor \code{regex_pars} is specified then the default is to use \emph{all}
parameters. As of version \verb{1.7.0}, \strong{bayesplot} also supports 'tidy'
parameter selection by specifying \code{pars = vars(...)}, where \code{...} is
specified the same way as in \link[dplyr:select]{dplyr::select(...)} and
similar functions. Examples of using \code{pars} in this way can be found on the
\link[=tidy-params]{Tidy parameter selection} page.}
\item{regex_pars}{An optional \link[base:grep]{regular expression} to use for
parameter selection. Can be specified instead of \code{pars} or in addition to
\code{pars}. When using \code{pars} for tidy parameter selection, the \code{regex_pars}
argument is ignored since \link[tidyselect:language]{select helpers}
perform a similar function.}
\item{transformations}{Optionally, transformations to apply to parameters
before plotting. If \code{transformations} is a function or a single string
naming a function then that function will be used to transform all
parameters. To apply transformations to particular parameters, the
\code{transformations} argument can be a named list with length equal to
the number of parameters to be transformed. Currently only univariate
transformations of scalar parameters can be specified (multivariate
transformations will be implemented in a future release). If
\code{transformations} is a list, the name of each list element should be a
parameter name and the content of each list element should be a function
(or any item to match as a function via \code{\link[=match.fun]{match.fun()}}, e.g. a
string naming a function). If a function is specified by its name as a
string (e.g. \code{"log"}), then it can be used to construct a new
parameter label for the appropriate parameter (e.g. \code{"log(sigma)"}).
If a function itself is specified
(e.g. \code{log} or \code{function(x) log(x)})
then \code{"t"} is used in the new parameter label to indicate that the
parameter is transformed (e.g. \code{"t(sigma)"}).
Note: due to partial argument matching \code{transformations} can be
abbreviated for convenience in interactive use (e.g., \code{transform}).}
\item{...}{Currently ignored.}
\item{size, alpha}{For \code{mcmc_scatter()}, passed to
\code{\link[ggplot2:geom_point]{ggplot2::geom_point()}} to control the appearance of the points.}
\item{np}{Optionally, a data frame of NUTS sampler parameters, either created
by \code{\link[=nuts_params]{nuts_params()}} or in the same form as the object returned by
\code{\link[=nuts_params]{nuts_params()}}. The colors, shapes, and sizes of the
superimposed points can be customized using the \code{np_style} argument.}
\item{np_style}{If \code{np} is specified, \code{np_style} can be a call to
the \code{scatter_style_np()} helper function (for \code{mcmc_scatter()}) or
the \code{pairs_style_np()} helper function (for \code{mcmc_pairs()}) to specify
arguments controlling the appearance of superimposed points representing
NUTS diagnostic information. (Note: for \code{pairs_style_np()} the
\code{size} arguments are interpreted as scaling factors).}
\item{bins, binwidth}{For \code{mcmc_hex()}, an optional numeric vector of
\emph{length two} passed to \code{\link[ggplot2:geom_hex]{ggplot2::geom_hex()}} to override the
default binwidth in both the vertical and horizontal directions.}
\item{diag_fun, off_diag_fun}{For \code{mcmc_pairs()}, the plotting function to
use for the plots along the diagonal and for the off-diagonal plots,
respectively. Currently \code{diag_fun} can be \code{"hist"} for histogram
or \code{"dens"} for density, and \code{off_diag_fun} can be
\code{"scatter"} for scatterplot or \code{"hex"} for a hexagonal heatmap.}
\item{diag_args, off_diag_args}{For \code{mcmc_pairs()}, optional named lists of
arguments to pass to the functions implied by the \code{diag_fun} and
\code{off_diag_fun} arguments, respectively. For example, if
\code{off_diag_fun} is \code{"scatter"} then \code{off_diag_args} could
include optional arguments to \code{mcmc_scatter()} like \code{size} and
\code{alpha}.}
\item{condition}{For \code{mcmc_pairs()}, a call to the \code{pairs_condition()}
helper function, which is used to specify a criterion for determining which
chains (or iterations) are shown in the plots above the diagonal and which
are shown in the plots below the diagonal. The histograms (or density
plots) along the diagonal are always made using all chains and iterations,
but the scatterplots (or hex plots) above and below the diagonal show
different combinations of chains/iterations depending on \code{condition}.
The default is a call to \code{pairs_condition()} with none of its arguments
specified. In this case half of the chains (or roughly half if there are an
odd number) will be used in the plots above the diagonal and the rest in
the plots below the diagonal. The \code{chains}, \code{draws}, and
\code{nuts} arguments to \code{pairs_condition()}, which are documented
below, can be used to change this default.}
\item{lp}{For \code{mcmc_pairs()}, a molten data frame of draws of the
log-posterior or, more commonly, of a quantity equal to the log-posterior
up to a constant. \code{lp} should either be created via
\code{\link[=log_posterior]{log_posterior()}} or be an object with the same form as the
object returned by \code{\link[=log_posterior]{log_posterior()}}.}
\item{max_treedepth}{For \code{mcmc_pairs()}, an integer representing the
maximum treedepth allowed when fitting the model (if fit using NUTS). This
is only needed for detecting which transitions (if any) hit the maximum
treedepth.}
\item{grid_args, save_gg_objects}{For \code{mcmc_pairs()}, arguments to pass to
\code{\link[=bayesplot_grid]{bayesplot_grid()}}. For example, since \code{mcmc_pairs()} returns
more than a single ggplot object, using \code{\link[=ggtitle]{ggtitle()}} afterwards
will not work. But you you can still add a title to the plot using
\code{grid_args = list(top="My title")}.}
\item{div_color, div_shape, div_size, div_alpha, td_color, td_shape, td_size, td_alpha}{Optional arguments to the \code{scatter_style_np()} or \code{pairs_style_np()}
helper functions that are eventually passed to
\code{\link[ggplot2:geom_point]{ggplot2::geom_point()}}.The default values are displayed in the
\strong{Usage} section above.}
\item{chains, draws, nuts}{Optional arguments to the \code{pairs_condition()}
helper function, which is used to specify the \code{condition} argument for
\code{mcmc_pairs()}.
\itemize{
\item The \code{chains} argument can be used to select some subset of the
chains. If \code{chains} is an integer vector then the behavior is the same
as the default (half the chains above the diagonal and half below) except
using only the specified subset of chains. Alternatively, \code{chains} can
be a list of two integer vectors with the first specifying the chains to be
shown in the plots above the diagonal and the second for below the
diagonal.
\item The \code{draws} argument to \code{pairs_condition()} can be used to
directly specify which realizations are plotted above and below the
diagonal. \code{draws} can be a single proportion, which is interpreted as
the proportion of realizations (among all chains) to plot in the lower
panel starting with the first realization in each chain, with the
complement (from the end of each chain) plotted in the upper panel.
Alternatively \code{draws} can be a logical vector with length equal to the
product of the number of iterations and the number of chains, in which case
realizations corresponding to \code{FALSE} and \code{TRUE} will be plotted
in the lower and upper panels, respectively.
\item For models fit using NUTS, the \code{nuts} argument to
\code{pairs_condition()} can be used. It takes a (possibly abbreviated)
string to select among \code{"accept_stat__"}, \code{"stepsize__"},
\code{"treedepth__"}, \code{"n_leapfrog__"}, \code{"divergent__"},
\code{"energy__"}, and \code{"lp__"}. These are the sampler parameters
associated with \code{\link[=NUTS]{NUTS()}} (and \code{"lp__"} is the log-posterior
up to an additive constant). In this case, plots below the diagonal will
contain realizations that are below the median of the indicated variable
(or are zero in the case of \code{"divergent__"}), and plots above the
diagonal will contain realizations that are greater than or equal to the
median of the indicated variable (or are one in the case of
\code{"divergent__"}). If \code{"lp__"} is used then the \code{lp}
argument to \code{mcmc_pairs} must also be specified. For the other NUTS
parameters the \code{np} argument to \code{mcmc_pairs()} must also be
specified.
}}
}
\value{
\code{mcmc_scatter()} and \code{mcmc_hex()} return a ggplot object that
can be further customized using the \strong{ggplot2} package.
\code{mcmc_pairs()} returns many ggplot objects organized into a grid via
\code{\link[=bayesplot_grid]{bayesplot_grid()}}.
}
\description{
Scatterplots, hexagonal heatmaps, and pairs plots from MCMC draws. See the
\strong{Plot Descriptions} section, below, for details.
}
\section{Plot Descriptions}{
\describe{
\item{\code{mcmc_scatter()}}{
Bivariate scatterplot of posterior draws. If using a very large number of
posterior draws then \code{mcmc_hex()} may be preferable to avoid
overplotting. For models fit using \link{NUTS} the \code{np},
and \code{np_style} arguments can be used to add additional information in
the plot (in this case the approximate location of divergences).
For more on why the scatter plot with divergences is a useful
diagnostic tool see \href{https://github.com/jgabry/bayes-vis-paper#readme}{Gabry et al. (2019)}.
}
\item{\code{mcmc_hex()}}{
Hexagonal heatmap of 2-D bin counts. This plot is useful in cases where
the posterior sample size is large enough that \code{mcmc_scatter()} suffers
from overplotting.
}
\item{\code{mcmc_pairs()}}{
A square plot matrix with univariate marginal distributions along the
diagonal (as histograms or kernel density plots) and bivariate
distributions off the diagonal (as scatterplots or hex heatmaps).
For the off-diagonal plots, the default is to split the chains so that
(roughly) half are displayed above the diagonal and half are below (all
chains are always merged together for the plots along the diagonal). Other
possibilities are available by setting the \code{condition} argument.
Additionally, extra diagnostic information for models fit using
\link{NUTS} can be added to the pairs plot using the \code{lp},
\code{np}, and \code{np_style} arguments. If \code{np} is specified (and
\code{condition} is \emph{not} \code{"divergent__"}), then points (red, by
default) will be superimposed onto the off-diagonal plots indicating which
(if any) iterations encountered a divergent transition. Also, if both
\code{np} and \code{max_treedepth} are specified then points (yellow, by
default) will be superimposed to indicate a transition that hit the
maximum treedepth rather than terminated its evolution normally. The
\code{np_style} argument can be used with the \code{pairs_style_np()}
convenience function to change the appearance of these overlaid points.
See the \strong{Examples} section.
}
}
}
\examples{
library("ggplot2")
# some parameter draws to use for demonstration
x <- example_mcmc_draws(params = 6)
dimnames(x)
# scatterplot of alpha vs log(sigma)
color_scheme_set("teal")
(p <- mcmc_scatter(x, pars = c("alpha", "sigma"),
transform = list(sigma = "log")))
p +
labs(
title = "Insert your own headline-grabbing title",
subtitle = "with a provocative subtitle",
caption = "and a controversial caption",
x = expression(alpha),
y = expression(log(sigma))
)
# add ellipse
p + stat_ellipse(level = 0.9, color = "gray20", size = 1)
# add contour
color_scheme_set("red")
p2 <- mcmc_scatter(x, pars = c("alpha", "sigma"), size = 3.5, alpha = 0.25)
p2 + stat_density_2d(color = "black", size = .5)
# can also add lines/smooths
color_scheme_set("pink")
(p3 <- mcmc_scatter(x, pars = c("alpha", "beta[3]"), alpha = 0.25, size = 3))
p3 + geom_smooth(method = "lm", se = FALSE, color = "gray20",
size = .75, linetype = 2)
\donttest{
if (requireNamespace("hexbin", quietly = TRUE)) {
# hexagonal heatmap
color_scheme_set("brightblue")
(p <- mcmc_hex(x, pars = c("sigma", "alpha"), transform = list(sigma = "log")))
p + plot_bg(fill = "gray95")
p + plot_bg(fill = "gray95") + panel_bg(fill = "gray70")
}
}
\donttest{
color_scheme_set("purple")
# pairs plots
# default of condition=NULL implies splitting chains between upper and lower panels
mcmc_pairs(x, pars = "alpha", regex_pars = "beta\\\\[[1,4]\\\\]",
off_diag_args = list(size = 1, alpha = 0.5))
# change to density plots instead of histograms and hex plots instead of
# scatterplots
mcmc_pairs(x, pars = "alpha", regex_pars = "beta\\\\[[1,4]\\\\]",
diag_fun = "dens", off_diag_fun = "hex")
# plot chain 1 above diagonal and chains 2, 3, and 4 below
color_scheme_set("brightblue")
mcmc_pairs(x, pars = "alpha", regex_pars = "beta\\\\[[1,4]\\\\]",
diag_fun = "dens", off_diag_fun = "hex",
condition = pairs_condition(chains = list(1, 2:4)))
}
\dontrun{
### Adding NUTS diagnostics to scatterplots and pairs plots
# examples using rstanarm package
library(rstanarm)
# for demonstration purposes, intentionally fit a model that
# will (almost certainly) have some divergences
fit <- stan_glm(
mpg ~ ., data = mtcars,
iter = 1000, refresh = 0,
# this combo of prior and adapt_delta should lead to some divergences
prior = hs(),
adapt_delta = 0.9
)
posterior <- as.array(fit)
np <- nuts_params(fit)
# mcmc_scatter with divergences highlighted
color_scheme_set("brightblue")
mcmc_scatter(posterior, pars = c("wt", "sigma"), np = np)
color_scheme_set("darkgray")
div_style <- scatter_style_np(div_color = "green", div_shape = 4, div_size = 4)
mcmc_scatter(posterior, pars = c("sigma", "(Intercept)"),
np = np, np_style = div_style)
# split the draws according to above/below median accept_stat__
# and show approximate location of divergences (red points)
color_scheme_set("brightblue")
mcmc_pairs(
posterior,
pars = c("wt", "cyl", "sigma"),
off_diag_args = list(size = 1, alpha = 1/3),
condition = pairs_condition(nuts = "accept_stat__"),
np = np
)
# more customizations:
# - transform sigma to log(sigma)
# - median log-posterior as 'condition'
# - hex instead of scatter for off-diagonal plots
# - show points where max treedepth hit in blue
color_scheme_set("darkgray")
mcmc_pairs(
posterior,
pars = c("wt", "cyl", "sigma"),
transform = list(sigma = "log"),
off_diag_fun = "hex",
condition = pairs_condition(nuts = "lp__"),
lp = log_posterior(fit),
np = np,
np_style = pairs_style_np(div_color = "firebrick",
td_color = "blue",
td_size = 2),
# for demonstration purposes, set max_treedepth to a value that will
# result in at least a few max treedepth warnings
max_treedepth = with(np, -1 + max(Value[Parameter == "treedepth__"]))
)
}
}
\references{
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and
Gelman, A. (2019), Visualization in Bayesian workflow.
\emph{J. R. Stat. Soc. A}, 182: 389-402. doi:10.1111/rssa.12378.
(\href{https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378}{journal version},
\href{https://arxiv.org/abs/1709.01449}{arXiv preprint},
\href{https://github.com/jgabry/bayes-vis-paper}{code on GitHub})
}
\seealso{
Other MCMC:
\code{\link{MCMC-combos}},
\code{\link{MCMC-diagnostics}},
\code{\link{MCMC-distributions}},
\code{\link{MCMC-intervals}},
\code{\link{MCMC-nuts}},
\code{\link{MCMC-overview}},
\code{\link{MCMC-parcoord}},
\code{\link{MCMC-recover}},
\code{\link{MCMC-traces}}
}
\concept{MCMC}
|