1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mcmc-traces.R
\name{MCMC-traces}
\alias{MCMC-traces}
\alias{mcmc_trace}
\alias{mcmc_trace_highlight}
\alias{trace_style_np}
\alias{mcmc_rank_overlay}
\alias{mcmc_rank_hist}
\alias{mcmc_rank_ecdf}
\alias{mcmc_trace_data}
\title{Trace and rank plots of MCMC draws}
\usage{
mcmc_trace(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
n_warmup = 0,
iter1 = 0,
window = NULL,
size = NULL,
np = NULL,
np_style = trace_style_np(),
divergences = NULL
)
mcmc_trace_highlight(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
n_warmup = 0,
window = NULL,
size = NULL,
alpha = 0.2,
highlight = 1
)
trace_style_np(div_color = "red", div_size = 0.25, div_alpha = 1)
mcmc_rank_overlay(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
facet_args = list(),
...,
n_bins = 20,
ref_line = FALSE
)
mcmc_rank_hist(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
facet_args = list(),
n_bins = 20,
ref_line = FALSE
)
mcmc_rank_ecdf(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
K = NULL,
facet_args = list(),
prob = 0.99,
plot_diff = FALSE,
interpolate_adj = NULL
)
mcmc_trace_data(
x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
highlight = NULL,
n_warmup = 0,
iter1 = 0
)
}
\arguments{
\item{x}{An object containing MCMC draws:
\itemize{
\item A 3-D array, matrix, list of matrices, or data frame. The \link{MCMC-overview}
page provides details on how to specify each these.
\item A \code{draws} object from the \pkg{\link{posterior}} package (e.g.,
\code{draws_array}, \code{draws_rvars}, etc.).
\item An object with an \code{as.array()} method that returns the same kind of 3-D
array described on the \link{MCMC-overview} page.
}}
\item{pars}{An optional character vector of parameter names. If neither
\code{pars} nor \code{regex_pars} is specified then the default is to use \emph{all}
parameters. As of version \verb{1.7.0}, \strong{bayesplot} also supports 'tidy'
parameter selection by specifying \code{pars = vars(...)}, where \code{...} is
specified the same way as in \link[dplyr:select]{dplyr::select(...)} and
similar functions. Examples of using \code{pars} in this way can be found on the
\link[=tidy-params]{Tidy parameter selection} page.}
\item{regex_pars}{An optional \link[base:grep]{regular expression} to use for
parameter selection. Can be specified instead of \code{pars} or in addition to
\code{pars}. When using \code{pars} for tidy parameter selection, the \code{regex_pars}
argument is ignored since \link[tidyselect:language]{select helpers}
perform a similar function.}
\item{transformations}{Optionally, transformations to apply to parameters
before plotting. If \code{transformations} is a function or a single string
naming a function then that function will be used to transform all
parameters. To apply transformations to particular parameters, the
\code{transformations} argument can be a named list with length equal to
the number of parameters to be transformed. Currently only univariate
transformations of scalar parameters can be specified (multivariate
transformations will be implemented in a future release). If
\code{transformations} is a list, the name of each list element should be a
parameter name and the content of each list element should be a function
(or any item to match as a function via \code{\link[=match.fun]{match.fun()}}, e.g. a
string naming a function). If a function is specified by its name as a
string (e.g. \code{"log"}), then it can be used to construct a new
parameter label for the appropriate parameter (e.g. \code{"log(sigma)"}).
If a function itself is specified
(e.g. \code{log} or \code{function(x) log(x)})
then \code{"t"} is used in the new parameter label to indicate that the
parameter is transformed (e.g. \code{"t(sigma)"}).
Note: due to partial argument matching \code{transformations} can be
abbreviated for convenience in interactive use (e.g., \code{transform}).}
\item{...}{Currently ignored.}
\item{facet_args}{A named list of arguments (other than \code{facets}) passed
to \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}} or \code{\link[ggplot2:facet_grid]{ggplot2::facet_grid()}}
to control faceting. Note: if \code{scales} is not included in \code{facet_args}
then \strong{bayesplot} may use \code{scales="free"} as the default (depending
on the plot) instead of the \strong{ggplot2} default of \code{scales="fixed"}.}
\item{n_warmup}{An integer; the number of warmup iterations included in
\code{x}. The default is \code{n_warmup = 0}, i.e. to assume no warmup
iterations are included. If \code{n_warmup > 0} then the background for
iterations \code{1:n_warmup} is shaded gray.}
\item{iter1}{An integer; the iteration number of the first included draw
(default is \code{0}). This can be used to make it more obvious that the warmup
iterations have been discarded from the traceplot. It cannot be specified
if \code{n_warmup} is also set to a positive value.}
\item{window}{An integer vector of length two specifying the limits of a
range of iterations to display.}
\item{size}{An optional value to override the default line size
for \code{mcmc_trace()} or the default point size for \code{mcmc_trace_highlight()}.}
\item{np}{For models fit using \link{NUTS} (more generally, any
\href{https://en.wikipedia.org/wiki/Symplectic_integrator}{symplectic integrator}),
an optional data frame providing NUTS diagnostic information. The data
frame should be the object returned by \code{\link[=nuts_params]{nuts_params()}} or one with the same
structure. If \code{np} is specified then tick marks are added to the bottom of
the trace plot indicating within which iterations there was a divergence
(if there were any). See the end of the \strong{Examples} section, below.}
\item{np_style}{A call to the \code{trace_style_np()} helper function to
specify arguments controlling the appearance of tick marks representing
divergences (if the \code{np} argument is specified).}
\item{divergences}{Deprecated. Use the \code{np} argument instead.}
\item{alpha}{For \code{mcmc_trace_highlight()}, passed to
\code{\link[ggplot2:geom_point]{ggplot2::geom_point()}} to control the transparency of the points
for the chains not highlighted.}
\item{highlight}{For \code{mcmc_trace_highlight()}, an integer specifying one
of the chains that will be more visible than the others in the plot.}
\item{div_color, div_size, div_alpha}{Optional arguments to the
\code{trace_style_np()} helper function that are eventually passed to
\code{\link[ggplot2:geom_rug]{ggplot2::geom_rug()}} if the \code{np} argument is also specified. They control
the color, size, and transparency specifications for showing divergences in
the plot. The default values are displayed in the \strong{Usage} section above.}
\item{n_bins}{For the rank plots, the number of bins to use for the histogram
of rank-normalized MCMC samples. Defaults to \code{20}.}
\item{ref_line}{For the rank plots, whether to draw a horizontal line at the
average number of ranks per bin. Defaults to \code{FALSE}.}
\item{K}{An optional integer defining the number of equally spaced evaluation
points for the PIT-ECDF. Reducing K when using \code{interpolate_adj = FALSE}
makes computing the confidence bands faster. For \code{ppc_pit_ecdf} and
\code{ppc_pit_ecdf_grouped}, if PIT values are supplied, defaults to
\code{length(pit)}, otherwise yrep determines the maximum accuracy of the
estimated PIT values and \code{K} is set to \code{min(nrow(yrep) + 1, 1000)}. For
\code{mcmc_rank_ecdf}, defaults to the number of iterations per chain in \code{x}.}
\item{prob}{For \code{mcmc_rank_ecdf()}, a value between 0 and 1
specifying the desired simultaneous confidence of the confidence bands to be
drawn for the rank ECDF plots.}
\item{plot_diff}{For \code{mcmc_rank_ecdf()}, a boolean specifying if the
difference between the observed rank ECDFs and the theoretical expectation
should be drawn instead of the unmodified rank ECDF plots.}
\item{interpolate_adj}{A boolean defining if the simultaneous confidence
bands should be interpolated based on precomputed values rather than
computed exactly. Computing the bands may be computationally intensive and
the approximation gives a fast method for assessing the ECDF trajectory.
The default is to use interpolation if \code{K} is greater than 200.}
}
\value{
The plotting functions return a ggplot object that can be further
customized using the \strong{ggplot2} package. The functions with suffix
\verb{_data()} return the data that would have been drawn by the plotting
function.
\code{mcmc_trace_data()} returns the data for the trace \emph{and} rank plots
in the same data frame.
}
\description{
Trace and rank plots of MCMC draws. See the \strong{Plot Descriptions}
section, below, for details.
}
\section{Plot Descriptions}{
\describe{
\item{\code{mcmc_trace()}}{
Standard trace plots of MCMC draws. For models fit using \link{NUTS},
the \code{np} argument can be used to also show divergences on the trace plot.
}
\item{\code{mcmc_trace_highlight()}}{
Traces are plotted using points rather than lines and the opacity of all
chains but one (specified by the \code{highlight} argument) is reduced.
}
\item{\code{mcmc_rank_hist()}}{
Whereas traditional trace plots visualize how the chains mix over the
course of sampling, rank histograms visualize how the values
from the chains mix together in terms of ranking. An ideal plot would
show the rankings mixing or overlapping in a uniform distribution.
See Vehtari et al. (2019) for details.
}
\item{\code{mcmc_rank_overlay()}}{
Ranks from \code{mcmc_rank_hist()} are plotted using overlaid lines in a
single panel.
}
\item{\code{mcmc_rank_ecdf()}}{
The ECDFs of the ranks from \code{mcmc_rank_hist()} are plotted with the
simultaneous confidence bands with a coverage determined by \code{prob}, that
is, bands that completely cover all of the rank ECDFs with the probability
\code{prob}. If \code{plot_diff = TRUE}, the difference between the observed rank
ECDFs and the theoretical expectation for samples originating from the
same distribution is drawn. See Säilynoja et al. (2021) for details.
}
}
}
\examples{
# some parameter draws to use for demonstration
x <- example_mcmc_draws(chains = 4, params = 6)
dim(x)
dimnames(x)
# trace plots of the betas
color_scheme_set("viridis")
mcmc_trace(x, regex_pars = "beta")
\donttest{
color_scheme_set("viridisA")
mcmc_trace(x, regex_pars = "beta")
color_scheme_set("viridisC")
mcmc_trace(x, regex_pars = "beta")
}
# mix color schemes
color_scheme_set("mix-blue-red")
mcmc_trace(x, regex_pars = "beta")
# use traditional ggplot discrete color scale
mcmc_trace(x, pars = c("alpha", "sigma")) +
ggplot2::scale_color_discrete()
# zoom in on a window of iterations, increase line size,
# add tick marks, move legend to the top, add gray background
color_scheme_set("viridisA")
mcmc_trace(x[,, 1:4], window = c(100, 130), size = 1) +
panel_bg(fill = "gray90", color = NA) +
legend_move("top")
# Rank-normalized histogram plots. Instead of showing how chains mix over
# time, look at how the ranking of MCMC samples mixed between chains.
color_scheme_set("viridisE")
mcmc_rank_hist(x, "alpha")
mcmc_rank_hist(x, pars = c("alpha", "sigma"), ref_line = TRUE)
mcmc_rank_overlay(x, "alpha")
# ECDF and ECDF difference plots of the ranking of MCMC samples between chains.
# Provide 99\% simultaneous confidence intervals for the chains sampling from
# the same distribution.
mcmc_rank_ecdf(x, prob = 0.99)
mcmc_rank_ecdf(x, prob = 0.99, plot_diff = TRUE)
\dontrun{
# parse facet label text
color_scheme_set("purple")
p <- mcmc_trace(
x,
regex_pars = "beta\\\\[[1,3]\\\\]",
facet_args = list(labeller = ggplot2::label_parsed)
)
p + facet_text(size = 15)
# mark first 100 draws as warmup
mcmc_trace(x, n_warmup = 100)
# plot as points, highlighting chain 2
color_scheme_set("brightblue")
mcmc_trace_highlight(x, pars = "sigma", highlight = 2, size = 2)
# for models fit using HMC/NUTS divergences can be displayed in the trace plot
library("rstanarm")
fit <- stan_glm(mpg ~ ., data = mtcars, refresh = 0,
# next line to keep example fast and also ensure we get some divergences
prior = hs(), iter = 400, adapt_delta = 0.8)
# extract draws using as.array (instead of as.matrix) to keep
# chains separate for trace plot
posterior <- as.array(fit)
# for stanfit and stanreg objects use nuts_params() to get the divergences
mcmc_trace(posterior, pars = "sigma", np = nuts_params(fit))
color_scheme_set("viridis")
mcmc_trace(
posterior,
pars = c("wt", "sigma"),
size = 0.5,
facet_args = list(nrow = 2),
np = nuts_params(fit),
np_style = trace_style_np(div_color = "black", div_size = 0.5)
)
}
}
\references{
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., Bürkner, P.
(2019). Rank-normalization, folding, and localization: An improved \emph{R}-hat
for assessing convergence of MCMC. \href{https://arxiv.org/abs/1903.08008}{arXiv preprint}.
Säilynoja, T., Bürkner, P., Vehtari, A.
(2021). Graphical Test for Discrete Uniformity and its Applications in
Goodness of Fit Evaluation and Multiple Sample Comparison \href{https://arxiv.org/abs/2103.10522}{arXiv preprint}.
}
\seealso{
Other MCMC:
\code{\link{MCMC-combos}},
\code{\link{MCMC-diagnostics}},
\code{\link{MCMC-distributions}},
\code{\link{MCMC-intervals}},
\code{\link{MCMC-nuts}},
\code{\link{MCMC-overview}},
\code{\link{MCMC-parcoord}},
\code{\link{MCMC-recover}},
\code{\link{MCMC-scatterplots}}
}
\concept{MCMC}
|