1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ppc-distributions.R
\name{PPC-distributions}
\alias{PPC-distributions}
\alias{ppc_data}
\alias{ppc_dens_overlay}
\alias{ppc_dens_overlay_grouped}
\alias{ppc_ecdf_overlay}
\alias{ppc_ecdf_overlay_grouped}
\alias{ppc_dens}
\alias{ppc_hist}
\alias{ppc_freqpoly}
\alias{ppc_freqpoly_grouped}
\alias{ppc_boxplot}
\alias{ppc_violin_grouped}
\alias{ppc_pit_ecdf}
\alias{ppc_pit_ecdf_grouped}
\title{PPC distributions}
\usage{
ppc_data(y, yrep, group = NULL)
ppc_dens_overlay(
y,
yrep,
...,
size = 0.25,
alpha = 0.7,
trim = FALSE,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n_dens = 1024
)
ppc_dens_overlay_grouped(
y,
yrep,
group,
...,
size = 0.25,
alpha = 0.7,
trim = FALSE,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n_dens = 1024
)
ppc_ecdf_overlay(
y,
yrep,
...,
discrete = FALSE,
pad = TRUE,
size = 0.25,
alpha = 0.7
)
ppc_ecdf_overlay_grouped(
y,
yrep,
group,
...,
discrete = FALSE,
pad = TRUE,
size = 0.25,
alpha = 0.7
)
ppc_dens(y, yrep, ..., trim = FALSE, size = 0.5, alpha = 1)
ppc_hist(
y,
yrep,
...,
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE
)
ppc_freqpoly(
y,
yrep,
...,
binwidth = NULL,
bins = NULL,
freq = TRUE,
size = 0.5,
alpha = 1
)
ppc_freqpoly_grouped(
y,
yrep,
group,
...,
binwidth = NULL,
bins = NULL,
freq = TRUE,
size = 0.5,
alpha = 1
)
ppc_boxplot(y, yrep, ..., notch = TRUE, size = 0.5, alpha = 1)
ppc_violin_grouped(
y,
yrep,
group,
...,
probs = c(0.1, 0.5, 0.9),
size = 1,
alpha = 1,
y_draw = c("violin", "points", "both"),
y_size = 1,
y_alpha = 1,
y_jitter = 0.1
)
ppc_pit_ecdf(
y,
yrep,
...,
pit = NULL,
K = NULL,
prob = 0.99,
plot_diff = FALSE,
interpolate_adj = NULL
)
ppc_pit_ecdf_grouped(
y,
yrep,
group,
...,
K = NULL,
pit = NULL,
prob = 0.99,
plot_diff = FALSE,
interpolate_adj = NULL
)
}
\arguments{
\item{y}{A vector of observations. See \strong{Details}.}
\item{yrep}{An \code{S} by \code{N} matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, \code{S}, is the size of the
posterior (or prior) sample used to generate \code{yrep}. The number of columns,
\code{N} is the number of predicted observations (\code{length(y)}). The columns of
\code{yrep} should be in the same order as the data points in \code{y} for the plots
to make sense. See the \strong{Details} and \strong{Plot Descriptions} sections for
additional advice specific to particular plots.}
\item{group}{A grouping variable of the same length as \code{y}.
Will be coerced to \link[base:factor]{factor} if not already a factor.
Each value in \code{group} is interpreted as the group level pertaining
to the corresponding observation.}
\item{...}{Currently unused.}
\item{size, alpha}{Passed to the appropriate geom to control the appearance of
the predictive distributions.}
\item{trim}{A logical scalar passed to \code{\link[ggplot2:geom_density]{ggplot2::geom_density()}}.}
\item{bw, adjust, kernel, n_dens}{Optional arguments passed to
\code{\link[stats:density]{stats::density()}} to override default kernel density estimation
parameters. \code{n_dens} defaults to \code{1024}.}
\item{discrete}{For \code{ppc_ecdf_overlay()}, should the data be treated as
discrete? The default is \code{FALSE}, in which case \code{geom="line"} is
passed to \code{\link[ggplot2:stat_ecdf]{ggplot2::stat_ecdf()}}. If \code{discrete} is set to
\code{TRUE} then \code{geom="step"} is used.}
\item{pad}{A logical scalar passed to \code{\link[ggplot2:stat_ecdf]{ggplot2::stat_ecdf()}}.}
\item{binwidth}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} to override
the default binwidth.}
\item{bins}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} to override
the default binwidth.}
\item{breaks}{Passed to \code{\link[ggplot2:geom_histogram]{ggplot2::geom_histogram()}} as an
alternative to \code{binwidth}.}
\item{freq}{For histograms, \code{freq=TRUE} (the default) puts count on the
y-axis. Setting \code{freq=FALSE} puts density on the y-axis. (For many
plots the y-axis text is off by default. To view the count or density
labels on the y-axis see the \code{\link[=yaxis_text]{yaxis_text()}} convenience
function.)}
\item{notch}{For the box plot, a logical scalar passed to
\code{\link[ggplot2:geom_boxplot]{ggplot2::geom_boxplot()}}. Note: unlike \code{geom_boxplot()}, the default is
\code{notch=TRUE}.}
\item{probs}{A numeric vector passed to \code{\link[ggplot2:geom_violin]{ggplot2::geom_violin()}}'s
\code{draw_quantiles} argument to specify at which quantiles to draw
horizontal lines. Set to \code{NULL} to remove the lines.}
\item{y_draw}{For \code{ppc_violin_grouped()}, a string specifying how to draw
\code{y}: \code{"violin"} (default), \code{"points"} (jittered points), or \code{"both"}.}
\item{y_jitter, y_size, y_alpha}{For \code{ppc_violin_grouped()}, if \code{y_draw} is
\code{"points"} or \code{"both"} then \code{y_size}, \code{y_alpha}, and \code{y_jitter} are passed
to to the \code{size}, \code{alpha}, and \code{width} arguments of \code{\link[ggplot2:geom_jitter]{ggplot2::geom_jitter()}}
to control the appearance of \code{y} points. The default of \code{y_jitter=NULL}
will let \strong{ggplot2} determine the amount of jitter.}
\item{pit}{An optional vector of probability integral transformed values for
which the ECDF is to be drawn. If NULL, PIT values are computed to \code{y} with
respect to the corresponding values in \code{yrep}.}
\item{K}{An optional integer defining the number of equally spaced evaluation
points for the PIT-ECDF. Reducing K when using \code{interpolate_adj = FALSE}
makes computing the confidence bands faster. For \code{ppc_pit_ecdf} and
\code{ppc_pit_ecdf_grouped}, if PIT values are supplied, defaults to
\code{length(pit)}, otherwise yrep determines the maximum accuracy of the
estimated PIT values and \code{K} is set to \code{min(nrow(yrep) + 1, 1000)}. For
\code{mcmc_rank_ecdf}, defaults to the number of iterations per chain in \code{x}.}
\item{prob}{The desired simultaneous coverage level of the bands around the
ECDF. A value in (0,1).}
\item{plot_diff}{A boolean defining whether to plot the difference between
the observed PIT- ECDF and the theoretical expectation for uniform PIT
values rather than plotting the regular ECDF. The default is \code{FALSE}, but
for large samples we recommend setting \code{plot_diff=TRUE} as the difference
plot will visually show a more dynamic range.}
\item{interpolate_adj}{A boolean defining if the simultaneous confidence
bands should be interpolated based on precomputed values rather than
computed exactly. Computing the bands may be computationally intensive and
the approximation gives a fast method for assessing the ECDF trajectory.
The default is to use interpolation if \code{K} is greater than 200.}
}
\value{
The plotting functions return a ggplot object that can be further
customized using the \strong{ggplot2} package. The functions with suffix
\verb{_data()} return the data that would have been drawn by the plotting
function.
}
\description{
Compare the empirical distribution of the data \code{y} to the distributions of
simulated/replicated data \code{yrep} from the posterior predictive distribution.
See the \strong{Plot Descriptions} section, below, for details.
}
\details{
For Binomial data, the plots may be more useful if
the input contains the "success" \emph{proportions} (not discrete
"success" or "failure" counts).
}
\section{Plot Descriptions}{
\describe{
\item{\verb{ppc_hist(), ppc_freqpoly(), ppc_dens(), ppc_boxplot()}}{
A separate histogram, shaded frequency polygon, smoothed kernel density
estimate, or box and whiskers plot is displayed for \code{y} and each
dataset (row) in \code{yrep}. For these plots \code{yrep} should therefore
contain only a small number of rows. See the \strong{Examples} section.
}
\item{\code{ppc_freqpoly_grouped()}}{
A separate frequency polygon is plotted for each level of a grouping
variable for \code{y} and each dataset (row) in \code{yrep}. For this plot
\code{yrep} should therefore contain only a small number of rows. See the
\strong{Examples} section.
}
\item{\verb{ppc_ecdf_overlay(), ppc_dens_overlay(), ppc_ecdf_overlay_grouped(), ppc_dens_overlay_grouped()}}{
Kernel density or empirical CDF estimates of each dataset (row) in
\code{yrep} are overlaid, with the distribution of \code{y} itself on top
(and in a darker shade). When using \code{ppc_ecdf_overlay()} with discrete
data, set the \code{discrete} argument to \code{TRUE} for better results.
For an example of \code{ppc_dens_overlay()} also see Gabry et al. (2019).
}
\item{\code{ppc_violin_grouped()}}{
The density estimate of \code{yrep} within each level of a grouping
variable is plotted as a violin with horizontal lines at notable
quantiles. \code{y} is overlaid on the plot either as a violin, points, or
both, depending on the \code{y_draw} argument.
}
\item{\code{ppc_pit_ecdf()}, \code{ppc_pit_ecdf_grouped()}}{
The PIT-ECDF of the empirical PIT values of \code{y} computed with respect to
the corresponding \code{yrep} values. \code{100 * prob}\% central simultaneous
confidence intervals are provided to asses if \code{y} and \code{yrep} originate
from the same distribution. The PIT values can also be provided directly
as \code{pit}.
See Säilynoja et al. (2021) for more details.}
}
}
\examples{
color_scheme_set("brightblue")
y <- example_y_data()
yrep <- example_yrep_draws()
group <- example_group_data()
dim(yrep)
ppc_dens_overlay(y, yrep[1:25, ])
\donttest{
# ppc_ecdf_overlay with continuous data (set discrete=TRUE if discrete data)
ppc_ecdf_overlay(y, yrep[sample(nrow(yrep), 25), ])
# PIT-ECDF and PIT-ECDF difference plot of the PIT values of y compared to
# yrep with 99\% simultaneous confidence bands.
ppc_pit_ecdf(y, yrep, prob = 0.99, plot_diff = FALSE)
ppc_pit_ecdf(y, yrep, prob = 0.99, plot_diff = TRUE)
}
# for ppc_hist,dens,freqpoly,boxplot definitely use a subset yrep rows so
# only a few (instead of nrow(yrep)) histograms are plotted
ppc_hist(y, yrep[1:8, ])
\donttest{
color_scheme_set("red")
ppc_boxplot(y, yrep[1:8, ])
# wizard hat plot
color_scheme_set("blue")
ppc_dens(y, yrep[200:202, ])
}
\donttest{
# frequency polygons
ppc_freqpoly(y, yrep[1:3, ], alpha = 0.1, size = 1, binwidth = 5)
ppc_freqpoly_grouped(y, yrep[1:3, ], group) + yaxis_text()
# if groups are different sizes then the 'freq' argument can be useful
ppc_freqpoly_grouped(y, yrep[1:3, ], group, freq = FALSE) + yaxis_text()
}
# density and distribution overlays by group
ppc_dens_overlay_grouped(y, yrep[1:25, ], group = group)
ppc_ecdf_overlay_grouped(y, yrep[1:25, ], group = group)
\donttest{
# PIT-ECDF plots of the PIT values by group
# with 99\% simultaneous confidence bands.
ppc_pit_ecdf_grouped(y, yrep, group=group, prob=0.99)
}
\donttest{
# don't need to only use small number of rows for ppc_violin_grouped
# (as it pools yrep draws within groups)
color_scheme_set("gray")
ppc_violin_grouped(y, yrep, group, size = 1.5)
ppc_violin_grouped(y, yrep, group, alpha = 0)
# change how y is drawn
ppc_violin_grouped(y, yrep, group, alpha = 0, y_draw = "points", y_size = 1.5)
ppc_violin_grouped(y, yrep, group,
alpha = 0, y_draw = "both",
y_size = 1.5, y_alpha = 0.5, y_jitter = 0.33
)
}
}
\references{
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and
Gelman, A. (2019), Visualization in Bayesian workflow.
\emph{J. R. Stat. Soc. A}, 182: 389-402. doi:10.1111/rssa.12378.
(\href{https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378}{journal version},
\href{https://arxiv.org/abs/1709.01449}{arXiv preprint},
\href{https://github.com/jgabry/bayes-vis-paper}{code on GitHub})
Säilynoja, T., Bürkner, P., Vehtari, A.
(2021). Graphical Test for Discrete Uniformity and its Applications in
Goodness of Fit Evaluation and Multiple Sample Comparison \href{https://arxiv.org/abs/2103.10522}{arXiv preprint}.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari,
A., and Rubin, D. B. (2013). \emph{Bayesian Data Analysis.} Chapman & Hall/CRC
Press, London, third edition. (Ch. 6)
}
\seealso{
Other PPCs:
\code{\link{PPC-censoring}},
\code{\link{PPC-discrete}},
\code{\link{PPC-errors}},
\code{\link{PPC-intervals}},
\code{\link{PPC-loo}},
\code{\link{PPC-overview}},
\code{\link{PPC-scatterplots}},
\code{\link{PPC-test-statistics}}
}
\concept{PPCs}
|