1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ppc-intervals.R
\name{PPC-intervals}
\alias{PPC-intervals}
\alias{ppc_intervals}
\alias{ppc_intervals_grouped}
\alias{ppc_ribbon}
\alias{ppc_ribbon_grouped}
\alias{ppc_intervals_data}
\alias{ppc_ribbon_data}
\title{PPC intervals}
\usage{
ppc_intervals(
y,
yrep,
x = NULL,
...,
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 1,
fatten = 2.5,
linewidth = 1
)
ppc_intervals_grouped(
y,
yrep,
x = NULL,
group,
...,
facet_args = list(),
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 1,
fatten = 2.5,
linewidth = 1
)
ppc_ribbon(
y,
yrep,
x = NULL,
...,
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 0.25,
y_draw = c("line", "points", "both")
)
ppc_ribbon_grouped(
y,
yrep,
x = NULL,
group,
...,
facet_args = list(),
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 0.25,
y_draw = c("line", "points", "both")
)
ppc_intervals_data(
y,
yrep,
x = NULL,
group = NULL,
...,
prob = 0.5,
prob_outer = 0.9
)
ppc_ribbon_data(
y,
yrep,
x = NULL,
group = NULL,
...,
prob = 0.5,
prob_outer = 0.9
)
}
\arguments{
\item{y}{A vector of observations. See \strong{Details}.}
\item{yrep}{An \code{S} by \code{N} matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, \code{S}, is the size of the
posterior (or prior) sample used to generate \code{yrep}. The number of columns,
\code{N} is the number of predicted observations (\code{length(y)}). The columns of
\code{yrep} should be in the same order as the data points in \code{y} for the plots
to make sense. See the \strong{Details} and \strong{Plot Descriptions} sections for
additional advice specific to particular plots.}
\item{x}{A numeric vector to use as the x-axis
variable. For example, \code{x} could be a predictor variable from a
regression model, a time variable for time-series models, etc. If \code{x}
is missing or \code{NULL} then the observation index is used for the x-axis.}
\item{...}{Currently unused.}
\item{prob, prob_outer}{Values between \code{0} and \code{1} indicating the desired
probability mass to include in the inner and outer intervals. The defaults
are \code{prob=0.5} and \code{prob_outer=0.9}.}
\item{alpha, size, fatten, linewidth}{Arguments passed to geoms. For ribbon
plots \code{alpha} is passed to \code{\link[ggplot2:geom_ribbon]{ggplot2::geom_ribbon()}} to control the opacity
of the outer ribbon and \code{size} is passed to \code{\link[ggplot2:geom_path]{ggplot2::geom_line()}} to
control the size of the line representing the median prediction (\code{size=0}
will remove the line). For interval plots \code{alpha}, \code{size}, \code{fatten}, and
\code{linewidth} are passed to \code{\link[ggplot2:geom_linerange]{ggplot2::geom_pointrange()}} (\code{fatten=0} will
remove the point estimates).}
\item{group}{A grouping variable of the same length as \code{y}.
Will be coerced to \link[base:factor]{factor} if not already a factor.
Each value in \code{group} is interpreted as the group level pertaining
to the corresponding observation.}
\item{facet_args}{A named list of arguments (other than \code{facets}) passed
to \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}} or \code{\link[ggplot2:facet_grid]{ggplot2::facet_grid()}}
to control faceting. Note: if \code{scales} is not included in \code{facet_args}
then \strong{bayesplot} may use \code{scales="free"} as the default (depending
on the plot) instead of the \strong{ggplot2} default of \code{scales="fixed"}.}
\item{y_draw}{For ribbon plots only, a string specifying how to draw \code{y}. Can
be \code{"line"} (the default), \code{"points"}, or \code{"both"}.}
}
\value{
The plotting functions return a ggplot object that can be further
customized using the \strong{ggplot2} package. The functions with suffix
\verb{_data()} return the data that would have been drawn by the plotting
function.
}
\description{
Medians and central interval estimates of \code{yrep} with \code{y} overlaid.
See the \strong{Plot Descriptions} section, below.
}
\section{Plot Descriptions}{
\describe{
\item{\verb{ppc_intervals(), ppc_ribbon()}}{
\code{100*prob}\% central intervals for \code{yrep} at each \code{x}
value. \code{ppc_intervals()} plots intervals as vertical bars with points
indicating \code{yrep} medians and darker points indicating observed
\code{y} values. \code{ppc_ribbon()} plots a ribbon of connected intervals
with a line through the median of \code{yrep} and a darker line connecting
observed \code{y} values. In both cases an optional \code{x} variable can
also be specified for the x-axis variable.
Depending on the number of observations and the variability in the
predictions at different values of \code{x}, one of these plots may be easier
to read than the other.
}
\item{\verb{ppc_intervals_grouped(), ppc_ribbon_grouped()}}{
Same as \code{ppc_intervals()} and \code{ppc_ribbon()}, respectively, but a
separate plot (facet) is generated for each level of a grouping variable.
}
}
}
\examples{
y <- rnorm(50)
yrep <- matrix(rnorm(5000, 0, 2), ncol = 50)
color_scheme_set("brightblue")
ppc_intervals(y, yrep)
ppc_ribbon(y, yrep)
ppc_ribbon(y, yrep, y_draw = "points")
\dontrun{
ppc_ribbon(y, yrep, y_draw = "both")
}
ppc_intervals(y, yrep, size = 1.5, fatten = 0) # remove the yrep point estimates
color_scheme_set("teal")
year <- 1950:1999
ppc_intervals(y, yrep, x = year, fatten = 1) + ggplot2::xlab("Year")
ppc_ribbon(y, yrep, x = year) + ggplot2::xlab("Year")
color_scheme_set("pink")
year <- rep(2000:2009, each = 5)
group <- gl(5, 1, length = 50, labels = LETTERS[1:5])
ppc_ribbon_grouped(y, yrep, x = year, group, y_draw = "both") +
ggplot2::scale_x_continuous(breaks = pretty)
ppc_ribbon_grouped(y, yrep, x = year, group,
facet_args = list(scales = "fixed")) +
xaxis_text(FALSE) +
xaxis_ticks(FALSE) +
panel_bg(fill = "gray20")
# get the data frames used to make the ggplots
ppc_dat <- ppc_intervals_data(y, yrep, x = year, prob = 0.5)
ppc_group_dat <- ppc_intervals_data(y, yrep, x = year, group = group, prob = 0.5)
\dontrun{
library("rstanarm")
fit <- stan_glmer(mpg ~ wt + (1|cyl), data = mtcars, refresh = 0)
yrep <- posterior_predict(fit)
color_scheme_set("purple")
ppc_intervals(y = mtcars$mpg, yrep = yrep, x = mtcars$wt, prob = 0.8) +
panel_bg(fill="gray90", color = NA) +
grid_lines(color = "white")
ppc_ribbon(y = mtcars$mpg, yrep = yrep, x = mtcars$wt,
prob = 0.6, prob_outer = 0.8)
ppc_ribbon_grouped(y = mtcars$mpg, yrep = yrep, x = mtcars$wt,
group = mtcars$cyl)
color_scheme_set("gray")
ppc_intervals(mtcars$mpg, yrep, prob = 0.5) +
ggplot2::scale_x_continuous(
labels = rownames(mtcars),
breaks = 1:nrow(mtcars)
) +
xaxis_text(angle = -70, vjust = 1, hjust = 0) +
xaxis_title(FALSE)
}
}
\references{
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and
Gelman, A. (2019), Visualization in Bayesian workflow.
\emph{J. R. Stat. Soc. A}, 182: 389-402. doi:10.1111/rssa.12378.
(\href{https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378}{journal version},
\href{https://arxiv.org/abs/1709.01449}{arXiv preprint},
\href{https://github.com/jgabry/bayes-vis-paper}{code on GitHub})
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari,
A., and Rubin, D. B. (2013). \emph{Bayesian Data Analysis.} Chapman & Hall/CRC
Press, London, third edition. (Ch. 6)
}
\seealso{
Other PPCs:
\code{\link{PPC-censoring}},
\code{\link{PPC-discrete}},
\code{\link{PPC-distributions}},
\code{\link{PPC-errors}},
\code{\link{PPC-loo}},
\code{\link{PPC-overview}},
\code{\link{PPC-scatterplots}},
\code{\link{PPC-test-statistics}}
}
\concept{PPCs}
|