1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
library(bayesplot)
context("Extractors")
if (requireNamespace("rstanarm", quietly = TRUE)) {
ITER <- 1000
CHAINS <- 3
fit <- rstanarm::stan_glm(mpg ~ wt + am, data = mtcars,
iter = ITER, chains = CHAINS,
refresh = 0)
}
x <- list(cbind(a = 1:3, b = rnorm(3)), cbind(a = 1:3, b = rnorm(3)))
# nuts_params and log_posterior methods -----------------------------------
test_that("nuts_params.list throws errors", {
x[[3]] <- c(a = 1:3, b = rnorm(3))
expect_error(nuts_params.list(x), "list elements should be matrices")
x[[3]] <- cbind(a = 1:3, d = rnorm(3))
expect_error(nuts_params.list(x), "same column names")
x[[3]] <- cbind(a = 1:4, b = rnorm(4))
expect_error(nuts_params.list(x), "same dimensions")
})
test_that("nuts_params.list parameter selection ok", {
expect_error(nuts_params.list(x, pars = "apple"), "subscript out of bounds")
np <- nuts_params.list(x, pars = "b")
expect_true(all(np$Parameter == "b"))
})
test_that("all nuts_params methods identical", {
skip_if_not_installed("rstanarm")
skip_if_not_installed("rstan")
expect_identical(
nuts_params(fit),
nuts_params(fit$stanfit)
)
expect_identical(
nuts_params(fit),
nuts_params(rstan::get_sampler_params(fit$stanfit, inc_warmup = FALSE))
)
})
test_that("nuts_params.stanreg returns correct structure", {
skip_if_not_installed("rstanarm")
np <- nuts_params(fit)
expect_identical(colnames(np), c("Chain", "Iteration", "Parameter", "Value"))
np_names <- paste0(c("accept_stat", "stepsize", "treedepth", "n_leapfrog",
"divergent", "energy"), "__")
expect_identical(levels(np$Parameter), np_names)
expect_equal(length(unique(np$Iteration)), floor(ITER / 2))
expect_equal(length(unique(np$Chain)), CHAINS)
})
test_that("log_posterior.stanreg returns correct structure", {
skip_if_not_installed("rstanarm")
lp <- log_posterior(fit)
expect_identical(colnames(lp), c("Chain", "Iteration", "Value"))
expect_equal(length(unique(lp$Iteration)), floor(ITER / 2))
expect_equal(length(unique(lp$Chain)), CHAINS)
})
test_that("rhat.stanreg returns correct structure", {
skip_if_not_installed("rstanarm")
r <- rhat(fit)
expect_named(r)
expect_equal(r, summary(fit)[1:length(r), "Rhat"])
expect_identical(names(rhat(fit, regex_pars = c("wt", "am"))),
c("wt", "am"))
})
test_that("neff_ratio.stanreg returns correct structure", {
skip_if_not_installed("rstanarm")
expect_named(neff_ratio(fit, pars = c("wt", "am")), c("wt", "am"))
ratio <- neff_ratio(fit)
expect_named(ratio)
ans <- summary(fit)[1:length(ratio), "n_eff"] / (floor(ITER / 2) * CHAINS)
expect_equal(ratio, ans, tol = 0.001)
})
test_that("rhat.stanfit returns correct structure", {
skip_if_not_installed("rstanarm")
r <- rhat(fit$stanfit)
expect_named(r)
expect_equal(r, summary(fit)[, "Rhat"])
r2 <- rhat(fit$stanfit, pars = c("wt", "sigma"))
expect_named(r2)
expect_equal(r2, summary(fit, pars = c("wt", "sigma"))[, "Rhat"])
})
test_that("neff_ratio.stanreg returns correct structure", {
skip_if_not_installed("rstanarm")
denom <- floor(ITER / 2) * CHAINS
ratio <- neff_ratio(fit$stanfit)
expect_named(ratio)
ans <- summary(fit)[, "n_eff"] / denom
expect_equal(ratio, ans, tol = 0.001)
ratio2 <- neff_ratio(fit$stanfit, pars = c("wt", "sigma"))
expect_named(ratio2)
ans2 <- summary(fit, pars = c("wt", "sigma"))[, "n_eff"] / denom
expect_equal(ratio2, ans2, tol = 0.001)
})
test_that("cmdstanr methods work", {
skip_on_cran()
skip_if_not_installed("cmdstanr")
fit <- cmdstanr::cmdstanr_example("logistic", iter_sampling = 500, chains = 2)
np <- nuts_params(fit)
np_names <- paste0(c("treedepth", "divergent", "energy", "accept_stat", "stepsize", "n_leapfrog"), "__")
expect_identical(levels(np$Parameter), np_names)
expect_equal(range(np$Iteration), c(1, 500))
expect_equal(range(np$Chain), c(1, 2))
expect_true(all(np$Value[np$Parameter == "divergent__"] == 0))
lp <- log_posterior(fit)
expect_named(lp, c("Chain", "Iteration", "Value"))
expect_equal(range(np$Chain), c(1, 2))
expect_equal(range(np$Iteration), c(1, 500))
r <- rhat(fit)
expect_named(head(r, 4), c("alpha", "beta[1]", "beta[2]", "beta[3]"))
expect_true(all(round(r) == 1))
ratio <- neff_ratio(fit)
expect_named(head(ratio, 4), c("alpha", "beta[1]", "beta[2]", "beta[3]"))
expect_true(all(ratio > 0))
})
|