File: test-helpers-mcmc.R

package info (click to toggle)
r-cran-bayesplot 1.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,080 kB
  • sloc: sh: 13; makefile: 2
file content (318 lines) | stat: -rw-r--r-- 11,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
library(bayesplot)
context("MCMC: misc. functions")

source(test_path("data-for-mcmc-tests.R"))



# melt_mcmc ----------------------------------------------------------------
test_that("melt_mcmc does not convert integer parameter names to integers #162", {
  mat2 <- mat[, 1:2]
  colnames(mat2) <- c("1", "2")
  long_mat <- melt_mcmc(mat2)
  expect_s3_class(long_mat$Parameter, "factor")

  arr2 <- arr[, , 1:2]
  dimnames(arr2)[[3]] <- c("1", "2")
  long_arr <- melt_mcmc(prepare_mcmc_array(arr2))
  expect_s3_class(long_arr$Parameter, "factor")

  dframe2 <- dframe[, 1:2]
  colnames(dframe2) <- c("1", "2")
  long_df <- melt_mcmc(as.matrix(dframe2))
  expect_s3_class(long_df$Parameter, "factor")
})


# 3-D array helpers --------------------------------------------------------
test_that("is_mcmc_array works", {
  expect_false(is_mcmc_array(mat))
  expect_false(is_mcmc_array(dframe))
  expect_false(is_mcmc_array(dframe_multiple_chains))
  expect_false(is_mcmc_array(arr))
  arr2 <- set_mcmc_dimnames(arr, parnames = dimnames(arr)[[3]])
  expect_mcmc_array(arr2)
})

test_that("parameter_names works", {
  x <- example_mcmc_draws()
  expect_identical(parameter_names(x), dimnames(x)[[3]])

  dimnames(x) <- list(a = NULL, b = NULL, c = letters[1:dim(x)[3]])
  expect_identical(parameter_names(x), dimnames(x)[[3]])

  dimnames(x) <- NULL
  expect_error(parameter_names(x), "No parameter names found")
  expect_error(parameter_names(x[, 1, ]), "No parameter names found")
})

test_that("has_multiple_chains works", {
  expect_error(has_multiple_chains(mat), "is_3d_array")
  expect_error(has_multiple_chains(dframe_multiple_chains), "is_3d_array")
  expect_error(has_multiple_chains(chainlist), "is_3d_array")

  expect_true(has_multiple_chains(arr))

  arr2 <- set_mcmc_dimnames(arr, parnames = dimnames(arr)[[3]])
  expect_true(has_multiple_chains(arr2))

  arr1chain2 <- set_mcmc_dimnames(arr1chain, parnames = dimnames(arr1chain)[[3]])
  expect_false(has_multiple_chains(arr1chain2))
})

test_that("has_multiple_params works", {
  expect_error(has_multiple_params(mat), "is_3d_array")
  expect_error(has_multiple_params(dframe_multiple_chains), "is_3d_array")

  expect_true(has_multiple_params(arr), "is_3d_array")

  arr2 <- set_mcmc_dimnames(arr, parnames = dimnames(arr)[[3]])
  expect_true(has_multiple_params(arr2))

  arr2 <- arr2[, , 3, drop = FALSE]
  expect_false(has_multiple_params(arr2))
})



# data frame with ‘chain’ variable ----------------------------------------
test_that("is_df_with_chain works", {
  expect_false(is_df_with_chain(arr))
  expect_false(is_df_with_chain(mat))
  expect_false(is_df_with_chain(chainlist))
  expect_false(is_df_with_chain(dframe))
  expect_true(is_df_with_chain(dframe_multiple_chains))

  mat2 <- cbind(mat, chain = dframe_multiple_chains$chain)
  expect_false(is_df_with_chain(mat2))

  dframe_multiple_chains2 <-
    cbind(dframe_multiple_chains, Chain = dframe_multiple_chains$chain)
  dframe_multiple_chains2$chain <- NULL
  expect_true(is_df_with_chain(dframe_multiple_chains2))
})

test_that("validate_df_with_chain works", {
  expect_error(validate_df_with_chain(mat), "is_df_with_chain")

  dframe_multiple_chains2 <-
    cbind(dframe_multiple_chains, Chain = dframe_multiple_chains$chain)
  dframe_multiple_chains2$chain <- NULL

  expect_identical(validate_df_with_chain(dframe_multiple_chains),
                   dframe_multiple_chains2)

  dframe_multiple_chains2$Chain <-
    factor(dframe_multiple_chains2$Chain, labels = letters[1:4])
  a <- validate_df_with_chain(dframe_multiple_chains2)
  expect_type(a$Chain, "integer")

  # no warning raised when using tibbles (#160)
  tbl <- tibble::tibble(parameter=rnorm(n=40), Chain=rep(1:4, each=10))
  a <- validate_df_with_chain(tbl)
  expect_type(a$Chain, "integer")
})

test_that("df_with_chain2array works", {
  a <- df_with_chain2array(dframe_multiple_chains)
  expect_mcmc_array(a)

  expect_error(df_with_chain2array(dframe), "is_df_with_chain")
})



# list of chains ----------------------------------------------------------
test_that("is_chain_list works", {
  expect_false(is_chain_list(arr))
  expect_false(is_chain_list(mat))
  expect_false(is_chain_list(dframe))
  expect_false(is_chain_list(dframe_multiple_chains))
  expect_true(is_chain_list(chainlist))
  expect_true(is_chain_list(chainlist1))
  expect_true(is_chain_list(chainlist1chain))
})

test_that("validate_chain_list works", {
  expect_identical(validate_chain_list(chainlist), chainlist)
  expect_identical(validate_chain_list(chainlist1), chainlist1)
  expect_identical(validate_chain_list(chainlist1chain), chainlist1chain)

  chainlist2 <- chainlist
  colnames(chainlist2[[1]]) <- colnames(chainlist[[1]])
  colnames(chainlist2[[1]])[1] <- "AAA"
  expect_error(validate_chain_list(chainlist2), "parameters for each chain")

  chainlist3 <- chainlist
  colnames(chainlist3[[1]]) <- c("", colnames(chainlist[[1]])[-1])
  expect_error(validate_chain_list(chainlist3), "Some parameters are missing names")

  chainlist[[1]] <- chainlist[[1]][-1, ]
  expect_error(validate_chain_list(chainlist),
               "Each chain should have the same number of iterations")
})

test_that("chain_list2array works", {
  expect_mcmc_array(chain_list2array(chainlist))
  expect_mcmc_array(chain_list2array(chainlist1))
  expect_mcmc_array(chain_list2array(chainlist1chain))
})



# transformations ---------------------------------------------------------
test_that("validate_transformations throws correct works", {
  trans <- list(x = "exp", 'beta[1]' = function(x) x^2, sigma = log)
  expect_silent(
    validate_transformations(trans, pars = c("x", "beta[1]", "sigma"))
  )

  trans2 <- trans
  trans2[[1]] <- match.fun(trans[[1]])
  expect_equal(
    validate_transformations(trans, pars = c("x", "beta[1]", "sigma")),
    trans2
  )
})
test_that("validate_transformations throws correct errors", {
  expect_error(
    validate_transformations(list("log", exp)),
    "must be a _named_ list"
  )
  expect_error(
    validate_transformations(list(x = "log", function(x) x^2)),
    "Each element of 'transformations' must have a name"
  )
  expect_error(
    validate_transformations(list(x = "log", 'beta[2]' = exp),
                             pars = c("x", "beta[1]")),
    regexp = "don't match parameter names: beta[2]", fixed = TRUE
  )
})

test_that("apply_transformations works", {
  trans <- list('beta[1]' = "exp", sigma = function(x) x^2)

  arr_trans <- apply_transformations(arr, transformations = trans)
  expect_equal(arr_trans[,, "sigma"], arr[,, "sigma"]^2)
  expect_equal(arr_trans[,, "beta[1]"], exp(arr[,, "beta[1]"]))

  mat_trans <- apply_transformations(mat, transformations = trans)
  expect_equal(mat_trans[, "sigma"], mat[, "sigma"]^2)
  expect_equal(mat_trans[, "beta[1]"], exp(mat[, "beta[1]"]))
})

test_that("transformations recycled properly if not a named list", {
  # if transformations is a single string naming a function
  x <- prepare_mcmc_array(arr, regex_pars = "beta", transformations = "exp")
  expect_identical(parameter_names(x), c("exp(beta[1])", "exp(beta[2])"))

  # if transformations is a single function
  x <- prepare_mcmc_array(arr, pars = c("beta[1]", "sigma"), transformations = exp)
  expect_identical(parameter_names(x), c("t(beta[1])", "t(sigma)"))
})


# prepare_mcmc_array ------------------------------------------------------
test_that("prepare_mcmc_array errors if NAs", {
  arr[1,1,1] <- NA
  expect_error(prepare_mcmc_array(arr), "NAs not allowed")
})
test_that("prepare_mcmc_array processes non-array input types correctly", {
  # errors are mostly covered by tests of the many internal functions above

  # data frame with no Chain column (treat as 1 chain or merged chains)
  a1 <- prepare_mcmc_array(dframe)
  expect_s3_class(a1, "mcmc_array")
  expect_equal(dim(a1), c(nrow(dframe), 1, ncol(dframe)))
  expect_equal(parameter_names(a1), colnames(dframe))

  # data frame with Chain column
  a2 <- prepare_mcmc_array(dframe_multiple_chains)
  expect_s3_class(a2, "mcmc_array")
  n_chain <- max(dframe_multiple_chains$chain)
  expect_equal(dim(a2), c(nrow(dframe) / n_chain, n_chain, ncol(dframe)))
  expect_equal(parameter_names(a2), colnames(dframe))

  # list of matrices with multiple chains
  a3 <- prepare_mcmc_array(chainlist)
  expect_s3_class(a3, "mcmc_array")
  expect_equal(dim(a3), c(nrow(chainlist[[1]]), length(chainlist), ncol(chainlist[[1]])))
  expect_equal(parameter_names(a3), colnames(chainlist[[1]]))

  # object with acceptable as.array method
  if (requireNamespace("rstanarm", quietly = TRUE)) {
    fit <- suppressWarnings(rstanarm::stan_glm(mpg ~ wt, data = mtcars, chains = 2, iter = 500, refresh = 0))
    a4 <- prepare_mcmc_array(fit)
    expect_s3_class(a4, "mcmc_array")
    expect_equal(a4, prepare_mcmc_array(as.array(fit)))
    expect_equal(dim(a4), c(250, 2, 3))
    expect_equal(parameter_names(a4), c("(Intercept)", "wt", "sigma"))
  }

  # object with unacceptable as.array method
  fit2 <- lm(mpg ~ wt, data = mtcars)
  expect_error(prepare_mcmc_array(fit2), "Arrays should have 2 or 3 dimensions.")
})


test_that("prepare_mcmc_array tidy parameter selection is same as traditional selection", {
  pars_all <- c(
    "(Intercept)", "beta[1]", "beta[2]", "sigma",
    "b[(Intercept) XX:1]", "b[(Intercept) XX:2]", "b[(Intercept) XX:3]",
    "b[(Intercept) ZZ:1]", "b[(Intercept) ZZ:2]", "b[(Intercept) ZZ:3]"
  )
  colnames(mat) <- pars_all

  # check easier parameters
  pars_char_1 <- c("(Intercept)", "beta[1]", "beta[2]", "sigma")
  pars_tidy_1a <- vars(`(Intercept)`, `beta[1]`, `beta[2]`, sigma)
  pars_tidy_1b <- vars(`(Intercept)`, contains("beta"), sigma)
  pars_tidy_1c <- vars("(Intercept)", param_range("beta", 1:2), "sigma")
  expect_identical(prepare_mcmc_array(mat, pars = pars_tidy_1a),
                   prepare_mcmc_array(mat, pars = pars_char_1))
  expect_identical(prepare_mcmc_array(mat, pars = pars_tidy_1b),
                   prepare_mcmc_array(mat, pars = pars_char_1))
  expect_identical(prepare_mcmc_array(mat, pars = pars_tidy_1c),
                   prepare_mcmc_array(mat, pars = pars_char_1))


  # check multilevel parameters
  pars_char_2 <- c("b[(Intercept) XX:1]", "b[(Intercept) ZZ:1]",
                   "b[(Intercept) XX:3]", "b[(Intercept) ZZ:3]")
  pars_tidy_2a <- vars(param_glue("b[(Intercept) {var}:{lev}]",
                                  var = c("XX", "ZZ"), lev = c(1, 3)))
  expect_identical(prepare_mcmc_array(mat, pars = pars_tidy_2a),
                   prepare_mcmc_array(mat, pars = pars_char_2))
})

test_that("tidy parameter selection throws correct errors", {
  expect_error(mcmc_hist(mat, pars = vars(contains("nonsense"))),
               "No parameters were found matching those names")

  expect_error(param_range("alpha", 1:3, vars = list("a", "b", "c")),
               "'vars' must be NULL or a character vector.")
  expect_error(param_glue("alpha[{lev}]", lev = 1:3, vars = 1:3,
               "'vars' must be NULL or a character vector."))
})

# rhat and neff helpers ---------------------------------------------------
test_that("diagnostic_factor.rhat works", {
  rhats <- new_rhat(c(low = 0.99, low = 1, low = 1.01,
                      ok = 1.06, ok = 1.09, ok = 1.1,
                      high = 1.2, high = 1.7))

  r <- diagnostic_factor(unname(rhats))
  expect_equivalent(r, as.factor(names(rhats)))
  expect_identical(levels(r), c("low", "ok", "high"))
})
test_that("diagnostic_factor.neff_ratio works", {
  ratios <- new_neff_ratio(c(low = 0.05, low = 0.01,
                             ok = 0.2, ok = 0.49,
                             high = 0.51, high = 0.99, high = 1))

  r <- diagnostic_factor(unname(ratios))
  expect_equivalent(r, as.factor(names(ratios)))
  expect_identical(levels(r), c("low", "ok", "high"))
})