File: test-mcmc-scatter-and-parcoord.R

package info (click to toggle)
r-cran-bayesplot 1.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,080 kB
  • sloc: sh: 13; makefile: 2
file content (457 lines) | stat: -rw-r--r-- 15,239 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
library(bayesplot)
context("MCMC: scatter, hex, and parallel coordinates plots")

source(test_path("data-for-mcmc-tests.R"))

if (requireNamespace("rstanarm", quietly = TRUE)) {
  suppressPackageStartupMessages(library(rstanarm))
  # also fit an rstanarm model to use with mcmc_pairs
  fit <- stan_glm(mpg ~ wt + am, data = mtcars, iter = 1000, chains = 2, refresh = 0)
  post <- as.array(fit)
  lp <- log_posterior(fit)
  np <- ensure_divergences(nuts_params(fit))
}


# mcmc_scatter/hex --------------------------------------------------------
test_that("mcmc_scatter returns a ggplot object", {
  expect_gg(mcmc_scatter(arr, pars = c("beta[1]", "beta[2]")))
  expect_gg(mcmc_scatter(arr1chain, regex_pars = "beta", size = 3, alpha = 0.5))
  expect_gg(mcmc_scatter(drawsarr, pars = c("theta[1]", "theta[2]")))
  expect_gg(mcmc_scatter(mat, pars = c("sigma", "(Intercept)")))
  expect_gg(mcmc_scatter(dframe, regex_pars = "x:[2,4]"))
  expect_gg(mcmc_scatter(dframe_multiple_chains,
                         pars = c("sigma", "(Intercept)")))
})

test_that("mcmc_scatter throws error if number of parameters is not 2", {
  expect_error(mcmc_scatter(arr, pars = c("sigma", "beta[1]", "beta[2]")), "exactly 2 parameters")
  expect_error(mcmc_scatter(arr, pars = "sigma"), "exactly 2 parameters")
  expect_error(mcmc_scatter(drawsarr, pars = "mu"), "exactly 2 parameters")
  expect_error(mcmc_scatter(arr1), "exactly 2 parameters")
  expect_error(mcmc_scatter(drawsarr1), "exactly 2 parameters")
  expect_error(mcmc_scatter(mat1), "exactly 2 parameters")
})

test_that("mcmc_scatter accepts NUTS info", {
  skip_if_not_installed("rstanarm")

  expect_gg(mcmc_scatter(post, pars = c("wt", "sigma"), np = np))

  div_style <- scatter_style_np(div_color = "orange", div_size = 2,
                                div_shape = 3, div_alpha = 0.5)
  g <- mcmc_scatter(post, pars = c("wt", "sigma"), np = np, np_style = div_style)
  expect_gg(g)
  expect_named(g$data, c("x", "y", "Divergent"))
})

test_that("mcmc_hex returns a ggplot object", {
  skip_if_not_installed("hexbin")
  expect_gg(mcmc_hex(arr, pars = c("beta[1]", "beta[2]")))
  expect_gg(mcmc_hex(arr1chain, regex_pars = "beta", binwidth = c(.5,.5)))
  expect_gg(mcmc_hex(drawsarr, pars = c("theta[1]", "theta[2]")))
})

test_that("mcmc_hex throws error if number of parameters is not 2", {
  skip_if_not_installed("hexbin")
  expect_error(mcmc_hex(arr, pars = c("sigma", "beta[1]", "beta[2]")), "exactly 2 parameters")
  expect_error(mcmc_hex(arr, pars = "sigma"), "exactly 2 parameters")
  expect_error(mcmc_hex(drawsarr, pars = "mu"), "exactly 2 parameters")
  expect_error(mcmc_hex(arr1), "exactly 2 parameters")
  expect_error(mcmc_hex(mat1), "exactly 2 parameters")
})



# mcmc_pairs  -------------------------------------------------------------
test_that("mcmc_pairs returns a bayesplot_grid object", {
  g <- mcmc_pairs(arr, pars = c("(Intercept)", "sigma"))
  expect_bayesplot_grid(g)
  expect_equal(print(g), plot(g))
  expect_bayesplot_grid(mcmc_pairs(arr, pars = "sigma", regex_pars = "beta"))
  expect_bayesplot_grid(mcmc_pairs(drawsarr, pars = "mu", regex_pars = "theta"))

  expect_bayesplot_grid(suppressWarnings(mcmc_pairs(arr1chain, regex_pars = "beta")))
  expect_bayesplot_grid(suppressWarnings(mcmc_pairs(drawsarr1chain, regex_pars = "theta")))
  expect_bayesplot_grid(suppressWarnings(mcmc_pairs(mat, pars = c("(Intercept)", "sigma"))))
  expect_bayesplot_grid(suppressWarnings(mcmc_pairs(dframe, pars = c("(Intercept)", "sigma"))))
  expect_bayesplot_grid(mcmc_pairs(dframe_multiple_chains, regex_pars = "beta"))
})

test_that("mcmc_pairs using hexbin works", {
  skip_if_not_installed("hexbin")
  expect_bayesplot_grid(mcmc_pairs(arr, regex_pars = "x:[1-3]",
                                   transformations = "exp",
                                   diag_fun = "dens", off_diag_fun = "hex",
                                   diag_args = list(trim = FALSE),
                                   off_diag_args = list(binwidth = c(0.5, 0.5))))
})

test_that("no mcmc_pairs non-NUTS 'condition's fail", {
  expect_bayesplot_grid(
    mcmc_pairs(arr, pars = "sigma", regex_pars = "beta",
               condition = pairs_condition(chains = list(1, 2:4)))
    )
  expect_bayesplot_grid(
    mcmc_pairs(arr, pars = "sigma", regex_pars = "beta",
               condition = pairs_condition(draws = rep(c(T,F), length.out = prod(dim(arr)[1:2]))))
    )
  expect_bayesplot_grid(
    mcmc_pairs(arr, pars = "sigma", regex_pars = "beta",
               condition = pairs_condition(draws = 1/3))
  )
  expect_bayesplot_grid(
    mcmc_pairs(arr, pars = "sigma", regex_pars = "beta",
               condition = pairs_condition(chains = c(1,3)))
  )
})

test_that("mcmc_pairs works with NUTS info", {
  skip_if_not_installed("rstanarm")
  expect_bayesplot_grid(mcmc_pairs(post, pars = c("wt", "am", "sigma"), np = np))
  expect_bayesplot_grid(mcmc_pairs(post, pars = c("wt", "am"),
                                   condition = pairs_condition(nuts="energy__"), np = np))
  expect_bayesplot_grid(mcmc_pairs(post, pars = c("wt", "am"),
                                   condition = pairs_condition(nuts="divergent__"), np = np))
  expect_bayesplot_grid(mcmc_pairs(post, pars = c("wt", "am"),
                                   condition = pairs_condition(nuts = "lp__"), lp=lp, np = np,
                                   max_treedepth = 2))

  p <- mcmc_pairs(
    post,
    pars = c("wt", "am"),
    off_diag_fun = "scatter",
    condition = pairs_condition(nuts = "lp__"),
    lp = lp,
    np = np,
    np_style = pairs_style_np(div_color = "firebrick", td_color = "dodgerblue", div_size = 2, td_size = 2),
    max_treedepth = with(np, max(Value[Parameter == "treedepth__"]) - 1)
  )
  expect_bayesplot_grid(p)
})


test_that("mcmc_pairs throws correct warnings and errors", {
  skip_if_not_installed("rstanarm")

  expect_warning(mcmc_pairs(arr1chain, regex_pars = "beta"),
                 "This plot is more useful with multiple chains")
  expect_error(mcmc_pairs(arr, pars = "sigma"),
               "requires at least two parameters")

  expect_error(
    mcmc_pairs(arr, condition = pairs_condition(draws = c(T, F))),
    "length(condition) == (n_iter * n_chain) is not TRUE",
    fixed = TRUE
  )
  expect_error(
    mcmc_pairs(arr, condition = pairs_condition(nuts = "accept_stat__")),
    "the 'np' argument to 'mcmc_pairs' must also be specified"
  )
  expect_error(
    mcmc_pairs(arr, condition = pairs_condition(nuts = "lp__")),
    "the 'lp' argument to 'mcmc_pairs' must also be specified"
  )
  expect_error(
    mcmc_pairs(arr, condition = "lp__"),
    'inherits(condition, "pairs_condition") is not TRUE',
    fixed = TRUE
  )

  expect_error(
    mcmc_pairs(post, pars = c("wt", "am"), max_treedepth = 2, np = np,
               np_style = list(color = "green")),
    'inherits(np_style, "nuts_style") is not TRUE',
    fixed = TRUE
  )

  post2 <- post
  post2[,1:2,"wt"] <- 0
  expect_warning(
    mcmc_pairs(post2, pars = c("wt", "am", "sigma")),
    "parameters were dropped because they are constant: wt"
  )

  post[,, "sigma"] <- post[,, "am"]
  expect_warning(
    mcmc_pairs(post, pars = c("wt", "sigma", "am")),
    "parameters were dropped because they are duplicative: am"
  )
})


# pairs_style_np -------------------------------------------------------
test_that("pairs_style_np returns correct structure", {
  style <- pairs_style_np(div_size = 3, td_color = "gray", td_shape = 1)
  expect_s3_class(style, "nuts_style")
  expect_named(style, c("color", "shape", "size", "alpha"), ignore.order = TRUE)
  expect_named(style$color, c("div", "td"))
  expect_named(style$size, c("div", "td"))
  expect_named(style$shape, c("div", "td"))
  expect_named(style$alpha, c("div", "td"))
})

test_that("pairs_style_np throws correct errors", {
  expect_error(
    pairs_style_np(div_size = "3"),
    "is.numeric(div_size) is not TRUE",
    fixed = TRUE
  )
  expect_error(
    pairs_style_np(td_color = 1),
    "is.character(td_color) is not TRUE",
    fixed = TRUE
  )
})


# pairs_condition ---------------------------------------------------------
test_that("pairs_condition returns correct structure", {
  # default
  cond0 <- pairs_condition()
  expect_s3_class(cond0, "pairs_condition")
  expect_equivalent(unclass(cond0), list())
  expect_equal(attr(cond0, "type"), "default")

  # chains
  cond1 <- pairs_condition(chains = 1:4)
  expect_s3_class(cond1, "integer")
  expect_s3_class(cond1, "pairs_condition")
  expect_equivalent(unclass(cond1), 1:4)
  expect_equal(attr(cond1, "type"), "chain_vector")

  cond2 <- pairs_condition(chains = list(1:4, 5:6))
  expect_s3_class(cond2, "list")
  expect_s3_class(cond2, "pairs_condition")
  expect_equivalent(unclass(cond2), list(upper=1:4, lower=5:6))
  expect_equal(attr(cond2, "type"), "chain_list")

  # draws
  cond3 <- pairs_condition(draws = 0.7)
  expect_s3_class(cond3, "numeric")
  expect_s3_class(cond3, "pairs_condition")
  expect_equivalent(unclass(cond3), 0.7)
  expect_equal(attr(cond3, "type"), "draws_proportion")

  cond4 <- pairs_condition(draws = c(T, F, T))
  expect_s3_class(cond4, "logical")
  expect_s3_class(cond4, "pairs_condition")
  expect_equivalent(unclass(cond4), c(T, F, T))
  expect_equal(attr(cond4, "type"), "draws_selection")

  # nuts
  cond5 <- pairs_condition(nuts = "lp__")
  expect_s3_class(cond5, "character")
  expect_s3_class(cond5, "pairs_condition")
  expect_equivalent(unclass(cond5), "lp__")
  expect_equal(attr(cond5, "type"), "nuts")
})

test_that("pairs_condition throws correct errors", {
  # chain
  expect_error(
    pairs_condition(chains = "abc"),
    "must be an integer vector or a list of two integer vectors"
  )
  expect_error(
    pairs_condition(chains = list(1:2, 3:4, 5:6)),
    "length(chains) == 2 is not TRUE",
    fixed = TRUE
  )
  expect_error(
    pairs_condition(chains = list(1:2, 2:3)),
    "Each chain can only be specified once"
  )
  expect_error(
    pairs_condition(chains = c(1:3, 2)),
    "Each chain can only be specified once"
  )

  # draws
  expect_error(
    pairs_condition(draws = "abc"),
    "must be a single proportion or a logical vector"
  )
  expect_error(
    pairs_condition(draws = 2),
    "draws > 0 && draws < 1 is not TRUE",
    fixed = TRUE
  )

  # nuts
  expect_error(
    pairs_condition(nuts = 2),
    "must be a single string"
  )
  expect_error(
    pairs_condition(nuts = c("lp__", "energy__")),
    "must be a single string"
  )
  expect_error(
    pairs_condition(nuts = "step_size__"),
    "stepsize__"
  )
})

test_that("pairs_condition message if multiple args specified", {
  options(useFancyQuotes = FALSE)
  expect_message(
    pairs_condition(chains = 2, draws = 0.5, nuts = "lp__"),
    "because they are superseded by 'chains': 'draws', 'nuts'",
    fixed = TRUE
  )
  expect_message(
    pairs_condition(chains = 2, nuts = "lp__"),
    "because they are superseded by 'chains': 'nuts'",
    fixed = TRUE
  )
  expect_message(
    pairs_condition(draws = 0.5, nuts = "lp__"),
    "because they are superseded by 'draws': 'nuts'",
    fixed = TRUE
  )
})



# mcmc_parcoord -----------------------------------------------------------
test_that("mcmc_parcoord returns a ggplot object", {
  expect_gg(mcmc_parcoord(arr, pars = c("(Intercept)", "sigma")))
  expect_gg(mcmc_parcoord(arr, pars = "sigma", regex_pars = "beta"))
})

test_that("mcmc_parcoord with nuts info returns a ggplot object", {
  skip_if_not_installed("rstanarm")
  expect_gg(mcmc_parcoord(post, pars = c("wt", "am", "sigma"), np = np))
})

test_that("mcmc_parcoord throws correct warnings and errors", {
  skip_if_not_installed("rstanarm")
  expect_error(mcmc_parcoord(arr, pars = "sigma"),
               "requires at least two parameters")

  expect_error(
    mcmc_parcoord(post, np = np[, -1]),
    "NUTS parameter data frame must have columns: Chain, Iteration, Parameter, Value",
    fixed = TRUE
  )

  expect_error(
    mcmc_parcoord(post, np = np, np_style = list(div_color = "green")),
    'inherits(np_style, "nuts_style") is not TRUE',
    fixed = TRUE
  )
})


# parcoord_style_np -------------------------------------------------------
test_that("parcoord_style_np returns correct structure", {
  style <- parcoord_style_np()
  expect_s3_class(style, "nuts_style")
  expect_named(style, c("color", "alpha", "size"), ignore.order = TRUE)
  expect_named(style$color, c("div"))
  expect_named(style$size, c("div"))
  expect_named(style$alpha, c("div"))
})

test_that("parcoord_style_np throws correct errors", {
  expect_error(
    parcoord_style_np(div_size = "3"),
    "is.numeric(div_size) is not TRUE",
    fixed = TRUE
  )
  expect_error(
    parcoord_style_np(td_color = 1),
    "unused argument (td_color = 1)",
    fixed = TRUE
  )
})


# Visual tests -----------------------------------------------------------------

test_that("mcmc_scatter renders correctly", {
  skip_on_cran()
  skip_if_not_installed("vdiffr")

  p_base <- mcmc_scatter(vdiff_dframe_chains)
  vdiffr::expect_doppelganger("mcmc_scatter (default)", p_base)

  p_custom <- mcmc_scatter(
    vdiff_dframe_chains,
    size = 2,
    alpha = 0.2
  )
  vdiffr::expect_doppelganger("mcmc_scatter (size, alpha)", p_custom)

  p_divergences <- mcmc_scatter(
    vdiff_dframe_chains,
    np = vdiff_dframe_chains_divergences
  )
  vdiffr::expect_doppelganger("mcmc_scatter (np)", p_divergences)
})

test_that("mcmc_hex renders correctly", {
  skip_on_cran()
  skip_if_not_installed("vdiffr")
  skip_if_not_installed("hexbin")

  p_base <- mcmc_hex(vdiff_dframe, pars = c("V1", "V2"))
  vdiffr::expect_doppelganger("mcmc_hex (default)", p_base)

  p_custom <- mcmc_hex(
    vdiff_dframe,
    pars = c("V1", "V2"),
    binwidth = 0.1
  )
  vdiffr::expect_doppelganger("mcmc_hex (bw)", p_custom)
})

test_that("mcmc_parcoord renders correctly", {
  skip_on_cran()
  skip_if_not_installed("vdiffr")

  p_base <- mcmc_parcoord(vdiff_dframe_chains)
  vdiffr::expect_doppelganger("mcmc_parcoord (default)", p_base)

  p_divergences <- mcmc_parcoord(
    vdiff_dframe_chains,
    np = vdiff_dframe_chains_divergences,
    np_style = parcoord_style_np(div_size = 2)
  )
  vdiffr::expect_doppelganger("mcmc_parcoord (np)", p_divergences)
})


test_that("mcmc_pairs renders correctly", {
  skip_on_cran()
  skip_if_not_installed("vdiffr")
  skip_if_not_installed("hexbin")

  p_base <- mcmc_pairs(vdiff_dframe_chains)
  vdiffr::expect_doppelganger("mcmc_pairs (default)", p_base)

  p_divergences <- mcmc_pairs(
    vdiff_dframe_chains,
    np = vdiff_dframe_chains_divergences,
    np_style = pairs_style_np(div_size = 2),
    off_diag_fun = "hex"
  )
  vdiffr::expect_doppelganger("mcmc_pairs (divs, hex)", p_divergences)

  p_treedepth <- mcmc_pairs(
    vdiff_dframe_chains,
    np = vdiff_dframe_chains_treedepth,
    np_style = pairs_style_np(td_color = "green"),
    max_treedepth = 9
  )
  vdiffr::expect_doppelganger("mcmc_pairs (td)", p_treedepth)

  p_divs_treedepth_divergences <- mcmc_pairs(
    vdiff_dframe_chains,
    np = vdiff_dframe_chains_np,
    np_style = pairs_style_np(div_size = 3, td_color = "green"),
    max_treedepth = 9
  )
  vdiffr::expect_doppelganger("mcmc_pairs (divs, td)", p_divs_treedepth_divergences)
})