1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
#' Convenience functions for adding or changing plot details
#'
#' Convenience functions for adding to (and changing details of) ggplot objects
#' (many of the objects returned by **bayesplot** functions). See the
#' **Examples** section, below.
#'
#' @name bayesplot-helpers
#'
#' @param ... For the various `vline_`, `hline_`, and `abline_`
#' functions, `...` is passed to [ggplot2::geom_vline()],
#' [ggplot2::geom_hline()], and [ggplot2::geom_abline()],
#' respectively, to control the appearance of the line(s).
#'
#' For functions ending in `_bg`, `...` is passed to
#' [ggplot2::element_rect()].
#'
#' For functions ending in `_text` or `_title`, `...` is passed
#' to [ggplot2::element_text()].
#'
#' For `xaxis_ticks` and `yaxis_ticks`, `...` is passed to
#' [ggplot2::element_line()].
#'
#' For `overlay_function`, `...` is passed to
#' [ggplot2::stat_function()].
#'
#' @return
#' A **ggplot2** layer or [ggplot2::theme()] object that can be
#' added to existing ggplot objects, like those created by many of the
#' **bayesplot** plotting functions. See the **Details** section.
#'
#' @details
#' \subsection{Add vertical, horizontal, and diagonal lines to plots}{
#' * `vline_at()` and `hline_at()` return an object created by either
#' [ggplot2::geom_vline()] or [ggplot2::geom_hline()] that can be added to a
#' ggplot object to draw a vertical or horizontal line (at one or several
#' values). If `fun` is missing then the lines are drawn at the values in `v`.
#' If `fun` is specified then the lines are drawn at the values returned by `fun(v)`.
#'
#' * `vline_0()` and `hline_0()` are wrappers for `vline_at()` and `hline_at()`
#' with `v = 0` and `fun` missing.
#'
#' * `abline_01()` is a wrapper for [ggplot2::geom_abline()] with the intercept
#' set to `0` and the slope set to `1`.
#'
#' * `lbub()` returns a _function_ that takes a single argument `x` and returns
#' the lower and upper bounds (`lb`, `ub`) of the `100*p`\% central interval
#' of `x`, as well as the median (if `med=TRUE`).
#' }
#'
#' \subsection{Control appearance of facet strips}{
#' * `facet_text()` returns ggplot2 theme objects that can be added to an
#' existing plot (ggplot object) to format the text in facet strips.
#'
#' * `facet_bg()` can be added to a plot to change the background of the facet strips.
#' }
#'
#' \subsection{Move legend, remove legend, or style the legend text}{
#' * `legend_move()` and `legend_none()` return a ggplot2 theme object that can
#' be added to an existing plot (ggplot object) in order to change the
#' position of the legend or remove it.
#'
#' * `legend_text()` works much like `facet_text()` but for the legend.
#' }
#'
#' \subsection{Control appearance of \eqn{x}-axis and \eqn{y}-axis features}{
#' * `xaxis_title()` and `yaxis_title()` return a ggplot2 theme object
#' that can be added to an existing plot (ggplot object) in order to toggle or
#' format the titles displayed on the `x` or `y` axis. (To change
#' the titles themselves use [ggplot2::labs()].)
#'
#' * `xaxis_text()` and `yaxis_text()` return a ggplot2 theme object
#' that can be added to an existing plot (ggplot object) in order to toggle or
#' format the text displayed on the `x` or `y` axis (e.g. tick
#' labels).
#'
#' * `xaxis_ticks()` and `yaxis_ticks()` return a ggplot2 theme object
#' that can be added to an existing plot (ggplot object) to change the
#' appearance of the axis tick marks.
#' }
#'
#' \subsection{Customize plot background}{
#' * `plot_bg()` returns a ggplot2 theme object that can be added to an
#' existing plot (ggplot object) to format the background of the *entire* plot.
#'
#' * `panel_bg()` returns a ggplot2 theme object that can be added to an
#' existing plot (ggplot object) to format the background of the just the
#' plotting area.
#'
#' * `grid_lines()` returns a ggplot2 theme object that can be added to
#' an existing plot (ggplot object) to add grid lines to the plot background.
#' }
#'
#' \subsection{Superimpose a function on an existing plot}{
#' * `overlay_function()` is a simple wrapper for [ggplot2::stat_function()] but
#' with the `inherit.aes` argument fixed to `FALSE`. Fixing `inherit.aes=FALSE`
#' will avoid potential errors due to the [ggplot2::aes()]thetic mapping used by
#' certain **bayesplot** plotting functions.
#' }
#'
#' @seealso [theme_default()] for the default ggplot theme used by
#' **bayesplot**.
#'
#' @examples
#' color_scheme_set("gray")
#' x <- example_mcmc_draws(chains = 1)
#' dim(x)
#' colnames(x)
#'
#'
#' ###################################
#' ### vertical & horizontal lines ###
#' ###################################
#' (p <- mcmc_intervals(x, regex_pars = "beta"))
#'
#' # vertical line at zero (with some optional styling)
#' p + vline_0()
#' p + vline_0(linewidth = 0.25, color = "darkgray", linetype = 2)
#'
#' # vertical line(s) at specified values
#' v <- c(-0.5, 0, 0.5)
#' p + vline_at(v, linetype = 3, linewidth = 0.25)
#'
#' my_lines <- vline_at(v, alpha = 0.25, linewidth = 0.75 * c(1, 2, 1),
#' color = c("maroon", "skyblue", "violet"))
#' p + my_lines
#'
#' \donttest{
#' # add vertical line(s) at computed values
#' # (three ways of getting lines at column means)
#' color_scheme_set("brightblue")
#' p <- mcmc_intervals(x, regex_pars = "beta")
#' p + vline_at(x[, 3:4], colMeans)
#' p + vline_at(x[, 3:4], "colMeans", color = "darkgray",
#' lty = 2, linewidth = 0.25)
#' p + vline_at(x[, 3:4], function(a) apply(a, 2, mean),
#' color = "orange",
#' linewidth = 2, alpha = 0.1)
#' }
#'
#' # using the lbub function to get interval lower and upper bounds (lb, ub)
#' color_scheme_set("pink")
#' parsed <- ggplot2::label_parsed
#' p2 <- mcmc_hist(x, pars = "beta[1]", binwidth = 1/20,
#' facet_args = list(labeller = parsed))
#' (p2 <- p2 + facet_text(size = 16))
#'
#' b1 <- x[, "beta[1]"]
#' p2 + vline_at(b1, fun = lbub(0.8), color = "gray20",
#' linewidth = 2 * c(1,.5,1), alpha = 0.75)
#' p2 + vline_at(b1, lbub(0.8, med = FALSE), color = "gray20",
#' linewidth = 2, alpha = 0.75)
#'
#'
#' ##########################
#' ### format axis titles ###
#' ##########################
#' color_scheme_set("green")
#' y <- example_y_data()
#' yrep <- example_yrep_draws()
#' (p3 <- ppc_stat(y, yrep, stat = "median", binwidth = 1/4))
#'
#' # turn off the legend, turn on x-axis title
#' p3 +
#' legend_none() +
#' xaxis_title(size = 13, family = "sans") +
#' ggplot2::xlab(expression(italic(T(y)) == median(italic(y))))
#'
#'
#' ################################
#' ### format axis & facet text ###
#' ################################
#' color_scheme_set("gray")
#' p4 <- mcmc_trace(example_mcmc_draws(), pars = c("alpha", "sigma"))
#'
#' myfacets <-
#' facet_bg(fill = "gray30", color = NA) +
#' facet_text(face = "bold", color = "skyblue", size = 14)
#' p4 + myfacets
#'
#' \donttest{
#' ##########################
#' ### control tick marks ###
#' ##########################
#' p4 +
#' myfacets +
#' yaxis_text(FALSE) +
#' yaxis_ticks(FALSE) +
#' xaxis_ticks(linewidth = 1, color = "skyblue")
#' }
#'
#' ##############################
#' ### change plot background ###
#' ##############################
#' color_scheme_set("blue")
#'
#' # add grid lines
#' ppc_stat(y, yrep) + grid_lines()
#'
#' # panel_bg vs plot_bg
#' ppc_scatter_avg(y, yrep) + panel_bg(fill = "gray90")
#' ppc_scatter_avg(y, yrep) + plot_bg(fill = "gray90")
#'
#' color_scheme_set("yellow")
#' p5 <- ppc_scatter_avg(y, yrep, alpha = 1)
#' p5 + panel_bg(fill = "gray20") + grid_lines(color = "white")
#' \donttest{
#' color_scheme_set("purple")
#' ppc_dens_overlay(y, yrep[1:30, ]) +
#' legend_text(size = 14) +
#' legend_move(c(0.75, 0.5)) +
#' plot_bg(fill = "gray90") +
#' panel_bg(color = "black", fill = "gray99", linewidth = 3)
#' }
#'
#'
#' ###############################################
#' ### superimpose a function on existing plot ###
#' ###############################################
#' # compare posterior of beta[1] to Gaussian with same posterior mean
#' # and sd as beta[1]
#' x <- example_mcmc_draws(chains = 4)
#' dim(x)
#' purple_gaussian <-
#' overlay_function(
#' fun = dnorm,
#' args = list(mean(x[,, "beta[1]"]), sd(x[,, "beta[1]"])),
#' color = "purple",
#' linewidth = 2
#' )
#'
#' color_scheme_set("gray")
#' mcmc_hist(x, pars = "beta[1]", freq = FALSE) + purple_gaussian
#' \donttest{
#' mcmc_dens(x, pars = "beta[1]") + purple_gaussian
#' }
#'
NULL
# lines -------------------------------------------------------------------
#' @rdname bayesplot-helpers
#' @export
#' @param v Either a numeric vector specifying the value(s) at which to
#' draw the vertical or horizontal line(s), or an object of any type to use as
#' the first argument to `fun`.
#' @param fun A function, or the name of a function, that returns a numeric
#' vector.
#' @param na.rm A logical scalar passed to the appropriate geom (e.g.
#' [ggplot2::geom_vline()]). The default is `TRUE`.
#'
vline_at <- function(v, fun, ..., na.rm = TRUE) {
geom_vline(xintercept = calc_v(v, fun),
na.rm = na.rm,
...)
}
#' @rdname bayesplot-helpers
#' @export
hline_at <- function(v, fun, ..., na.rm = TRUE) {
geom_hline(yintercept = calc_v(v, fun),
na.rm = na.rm,
...)
}
#' @rdname bayesplot-helpers
#' @export
vline_0 <- function(..., na.rm = TRUE) {
geom_vline(xintercept = 0,
na.rm = na.rm,
...)
}
#' @rdname bayesplot-helpers
#' @export
#'
hline_0 <- function(..., na.rm = TRUE) {
geom_hline(yintercept = 0,
na.rm = na.rm,
...)
}
#' @rdname bayesplot-helpers
#' @export
#'
abline_01 <- function(..., na.rm = TRUE) {
geom_abline(intercept = 0,
slope = 1,
na.rm = na.rm,
...)
}
# intervals ---------------------------------------------------------------
#' @rdname bayesplot-helpers
#' @export
#' @param p The probability mass (in `[0,1]`) to include in the interval.
#' @param med Should the median also be included in addition to the lower
#' and upper bounds of the interval?
#'
lbub <- function(p, med = TRUE) {
function(x) calc_intervals(x, p, med = med)
}
# internal
calc_v <- function(v, fun, fun_args, ...) {
if (missing(v)) {
abort("'v' can't be missing.")
}
if (missing(fun)) {
return(v)
}
f <- match.fun(fun)
if (missing(fun_args)) {
return(f(v))
}
do.call(f, c(list(v), fun_args))
}
calc_intervals <- function(x, p, med = TRUE, ...) {
a <- (1 - p) / 2
pr <- c(a, if (med) 0.5, 1 - a)
quantile(x, pr, ...)
}
# legend stuff ------------------------------------------------------------
#' @rdname bayesplot-helpers
#' @export
#' @param position The position of the legend. Either a numeric vector (of
#' length 2) giving the relative coordinates (between 0 and 1) for the legend,
#' or a string among `"right"`, `"left"`, `"top"`,
#' `"bottom"`. Using `position = "none"` is also allowed and is
#' equivalent to using `legend_none()`.
#'
legend_move <- function(position = "right") {
if (is.numeric(position) && "legend.position.inside" %in% fn_fmls_names(theme)) {
theme(legend.position = "inside", legend.position.inside = position)
} else {
theme(legend.position = position)
}
}
#' @rdname bayesplot-helpers
#' @export
legend_none <- function() {
theme(legend.position = "none")
}
#' @rdname bayesplot-helpers
#' @export
legend_text <- function(...) {
theme(legend.text = element_text(...))
}
# axis stuff --------------------------------------------------------------
#' @rdname bayesplot-helpers
#' @export
xaxis_title <- function(on = TRUE, ...) {
if (!on) {
return(xlab(NULL))
}
theme(axis.title.x = element_text(...))
}
#' @rdname bayesplot-helpers
#' @export
xaxis_text <- function(on = TRUE, ...) {
theme(axis.text.x = if (on)
element_text(...)
else
element_blank())
}
#' @rdname bayesplot-helpers
#' @export
xaxis_ticks <- function(on = TRUE, ...) {
theme(axis.ticks.x = if (on)
element_line(...)
else
element_blank())
}
#' @rdname bayesplot-helpers
#' @export
yaxis_title <- function(on = TRUE, ...) {
if (!on)
return(ylab(NULL))
theme(axis.title.y = element_text(...))
}
#' @rdname bayesplot-helpers
#' @export
yaxis_text <- function(on = TRUE, ...) {
theme(axis.text.y = if (on)
element_text(...)
else
element_blank())
}
#' @rdname bayesplot-helpers
#' @export
yaxis_ticks <- function(on = TRUE, ...) {
theme(axis.ticks.y = if (on)
element_line(...)
else
element_blank())
}
# facet stuff -------------------------------------------------------------
#' @rdname bayesplot-helpers
#' @export
#' @param on For functions modifying ggplot [theme][ggplot2::theme] elements,
#' set `on=FALSE` to set the element to [ggplot2::element_blank()]. For
#' example, facet text can be removed by adding `facet_text(on=FALSE)`, or
#' simply `facet_text(FALSE)` to a ggplot object. If `on=TRUE` (the default),
#' then `...` can be used to customize the appearance of the theme element.
#'
facet_text <- function(on = TRUE, ...) {
theme(strip.text = if (on)
element_text(...)
else
element_blank())
}
#' @rdname bayesplot-helpers
#' @export
facet_bg <- function(on = TRUE, ...) {
theme(strip.background = if (on)
element_rect(...)
else
element_blank())
}
# plot background ---------------------------------------------------------
#' @rdname bayesplot-helpers
#' @export
panel_bg <- function(on = TRUE, ...) {
theme(panel.background = if (on)
element_rect(...)
else
element_blank())
}
#' @rdname bayesplot-helpers
#' @export
plot_bg <- function(on = TRUE, ...) {
theme(plot.background = if (on)
element_rect(...)
else
element_blank())
}
#' @rdname bayesplot-helpers
#' @export
#' @param color,size Passed to [ggplot2::element_line()].
#'
grid_lines <- function(color = "gray50", size = 0.2) {
theme(
panel.grid.major = element_line(color = color, linewidth = size),
panel.grid.minor = element_line(color = color, linewidth = size * 0.5)
)
}
grid_lines_y <- function(color = "gray50", size = 0.2) {
theme(
panel.grid.major.y = element_line(color = color, linewidth = size),
panel.grid.minor.y = element_line(color = color, linewidth = size * 0.5)
)
}
# overlay functions on an existing plot -----------------------------------
#' @rdname bayesplot-helpers
#' @export
overlay_function <- function(...) {
stat_function(..., inherit.aes = FALSE)
}
# Resolve a function name and store the expression passed in by the user
#' @noRd
#' @param f a function-like thing: a string naming a function, a function
#' object, an anonymous function object, a formula-based lambda, and `NULL`.
#' @param fallback character string providing a fallback function name
#' @return the function named in `f` with an added `"tagged_expr"` attribute
#' containing the expression to represent the function name and an
#' `"is_anonymous_function"` attribute to flag if the expression is a call to
#' `function()`.
as_tagged_function <- function(f = NULL, fallback = "func") {
qf <- enquo(f)
f <- eval_tidy(qf)
if (!is.null(attr(f, "tagged_expr"))) return(f)
f_expr <- quo_get_expr(qf)
f_fn <- f
if (is_character(f)) { # f = "mean"
# using sym() on the evaluated `f` means that a variable that names a
# function string `x <- "mean"; as_tagged_function(x)` will be lost
# but that seems okay
f_expr <- sym(f)
f_fn <- match.fun(f)
} else if (is_null(f)) { # f = NULL
f_fn <- identity
f_expr <- sym(fallback)
} else if (is_callable(f)) { # f = mean or f = function(x) mean(x)
f_expr <- f_expr # or f = ~mean(.x)
f_fn <- as_function(f)
}
# Setting attributes on primitive functions is deprecated, so wrap them
# and then tag
if (is_primitive(f_fn)) {
f_fn_old <- f_fn
f_factory <- function(f) { function(...) f(...) }
f_fn <- f_factory(f_fn_old)
}
attr(f_fn, "tagged_expr") <- f_expr
attr(f_fn, "is_anonymous_function") <-
is_call(f_expr, name = "function") || is_formula(f_expr)
f_fn
}
|