File: helpers-ppc.R

package info (click to toggle)
r-cran-bayesplot 1.14.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,288 kB
  • sloc: sh: 13; makefile: 2
file content (597 lines) | stat: -rw-r--r-- 19,544 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# input validation and type checking ----------------------------------------

# Check if an object is a vector (but not list) or a 1-D array
is_vector_or_1Darray <- function(x) {
  if (is.vector(x) && !is.list(x)) {
    return(TRUE)
  }

  isTRUE(is.array(x) && length(dim(x)) == 1)
}

# Check if x consists of whole numbers (very close to integers)
# Implementation here follows example ?integer
is_whole_number <- function(x, tol = .Machine$double.eps) {
  if (!is.numeric(x)) {
    FALSE
  } else {
    abs(x - round(x)) < tol
  }
}

# Check if all values in x are whole numbers or counts (non-negative whole
# numbers)
all_whole_number <- function(x, ...) {
  all(is_whole_number(x, ...))
}
all_counts <- function(x, ...) {
  all_whole_number(x, ...) && min(x) >= 0
}


#' Validate y
#'
#' Checks that `y` is numeric, doesn't have any NAs, and is either a vector, 1-D
#' array, or univariate time series object of class `ts`.
#'
#' @param y The `y` object from the user.
#' @return Either throws an error or returns a numeric vector.
#' @noRd
validate_y <- function(y) {
  stopifnot(is.numeric(y))

  if (!(inherits(y, "ts") && is.null(dim(y)))) {
    if (!is_vector_or_1Darray(y)) {
      abort("'y' must be a vector or 1D array.")
    }
    y <- as.vector(y)
  }

  if (anyNA(y)) {
    abort("NAs not allowed in 'y'.")
  }

  unname(y)
}


#' Validate predictions (`yrep` or `ypred`)
#'
#' Checks that `predictions` is a numeric matrix, doesn't have any NAs, and has
#' the correct number of columns.
#'
#' @param predictions The user's `yrep` or `ypred` object (SxN matrix).
#' @param `n_obs` The number of observations (columns) that `predictions` should
#'   have, if applicable.
#' @return Either throws an error or returns a numeric matrix.
#' @noRd
validate_predictions <- function(predictions, n_obs = NULL) {
  # sanity checks
  stopifnot(is.matrix(predictions), is.numeric(predictions))
  if (!is.null(n_obs)) {
    stopifnot(length(n_obs) == 1, n_obs == as.integer(n_obs))
  }

  if (is.integer(predictions)) {
    if (nrow(predictions) == 1) {
      predictions[1, ] <- as.numeric(predictions[1,, drop = FALSE])
    }
    else {
      predictions <- apply(predictions, 2, as.numeric)
    }
  }

  if (anyNA(predictions)) {
    abort("NAs not allowed in predictions.")
  }

  if (!is.null(n_obs) && (ncol(predictions) != n_obs)) {
    abort("ncol(yrep) must be equal to length(y).")
  }

  # get rid of names but keep them as an attribute in case we want them
  obs_names <- colnames(predictions)
  predictions <- unclass(unname(predictions))
  attr(predictions, "obs_names") <- obs_names

  predictions
}


#' Validate PIT
#'
#' Checks that `pit` is numeric, doesn't have any NAs, and is either a vector,
#' or a 1-D array with values in [0,1].
#'
#' @param pit The 'pit' object from the user.
#' @return Either throws an error or returns a numeric vector.
#' @noRd
validate_pit <- function(pit) {
  if (anyNA(pit)) {
    abort("NAs not allowed in 'pit'.")
  }

  stopifnot(is.numeric(pit))

  if (!is_vector_or_1Darray(pit)) {
    abort("'pit' must be a vector or 1D array.")
  }

  if (any(pit > 1) || any(pit < 0)) {
    abort("'pit' must only contain values between 0 and 1.")
  }

  unname(pit)
}

#' Validate group
#'
#' Checks that grouping variable has correct number of observations and is
#' either a factor variable or vector (which is coerced to factor).
#'
#' @param group The user's `group` argument.
#' @param n_obs The number of observations that `group` should contain (e.g.,
#'   `length(y)`, `ncol(yrepd)`, etc.). Unlike for `validate_predictions()`,
#'   this is always required for `validate_group()`.
#' @return Either throws an error or returns `group` (coerced to a factor).
#' @noRd
validate_group <- function(group, n_obs) {
  # sanity checks
  stopifnot(is.vector(group) || is.factor(group),
            length(n_obs) == 1, n_obs == as.integer(n_obs))

  if (!is.factor(group)) {
    group <- as.factor(group)
  }

  if (anyNA(group)) {
    abort("NAs not allowed in 'group'.")
  }

  if (length(group) != n_obs) {
    abort("length(group) must be equal to the number of observations.")
  }

  unname(group)
}


#' Validate x
#'
#' Checks that x is a numeric vector, doesn't have any NAs, and has the
#' same length as y.
#'
#' @param x,y The user's `x` vector and the `y` object returned by `validate_y()`.
#' @param unique_x `TRUE` or `FALSE` indicating whether to require all unique
#'   values in `x`.
#' @return Either throws an error or returns a numeric vector.
#' @noRd
validate_x <- function(x = NULL, y, unique_x = FALSE) {
  if (is.null(x)) {
    if (inherits(y, "ts") && is.null(dim(y))) {
      x <- stats::time(y)
    } else {
      x <- seq_along(y)
    }
  }

  stopifnot(is.numeric(x))

  if (!is_vector_or_1Darray(x)) {
    abort("'x' must be a vector or 1D array.")
  }

  x <- as.vector(x)
  if (length(x) != length(y)) {
    abort("length(x) must be equal to length(y).")
  }

  if (anyNA(x)) {
    abort("NAs not allowed in 'x'.")
  }

  if (unique_x) {
    stopifnot(identical(length(x), length(unique(x))))
  }

  unname(x)
}


# Internals for grouped plots ---------------------------------------------

#' Modify a call to a `_grouped` function to a call to the ungrouped version
#' @param fn The new function to call (a string).
#' @param call The original call (from `match.call(expand.dots = FALSE)`).
#' @return The new unevaluated call, with additional argument
#'   `called_from_internal=TRUE` which can be detected by the function to be
#'   called so it knows not to warn about the `group` and `facet_args` arguments.
#' @noRd
ungroup_call <- function(fn, call) {
  args <- rlang::call_args(call)
  args$called_from_internal <- TRUE
  args[["..."]] <- NULL
  rlang::call2(.fn = fn, !!!args, .ns = "bayesplot")
}

#' Check if the `...` to a plotting function was passed from it's `_grouped` version
#' @param dots The `...` arguments already in a list, i.e., `list(...)`.
#' @return `TRUE` or `FALSE`
#' @noRd
from_grouped <- function(dots) {
  isTRUE(dots[["called_from_internal"]]) && !is.null(dots[["group"]])
}



# reshaping ---------------------------------------------------

#' Convert matrix of predictions into a molten data frame
#'
#' @param predictions A matrix (`yrep` or `ypred`), already validated using
#'   `validate_predictions()`.
#' @return A data frame with columns:
#'   * `y_id`: integer indicating the observation number (`predictions` column).
#'   * `rep_id`: integer indicating the simulation number (`predictions` row).
#'   * `rep_label`: factor with S levels, where S is `nrow(predictions)`, i.e.
#'     the number of simulations included in `predictions`.
#'   * `value`: the simulation values.
#' @noRd
melt_predictions <- function(predictions) {
  obs_names <- attr(predictions, "obs_names")
  out <- predictions %>%
    reshape2::melt(varnames = c("rep_id", "y_id")) %>%
    tibble::as_tibble()

  rep_labels <- create_rep_ids(out$rep_id)
  y_names <- obs_names[out$y_id] %||% out$y_id
  out$rep_label <- factor(rep_labels, levels = unique(rep_labels))
  out$y_name <- factor(y_names, levels = unique(y_names))
  out[c("y_id", "y_name", "rep_id", "rep_label", "value")]
}


#' Stack `y` below melted `yrep` data
#'
#' @param y Validated `y` input.
#' @param yrep Validated `yrep` input.
#' @return A data frame with the all the columns as the one returned by
#'   `melt_predictions()`, plus additional columns:
#'   * `is_y`: logical indicating whether the values are observations (`TRUE`)
#'      or simulations (`FALSE`).
#'   * `is_y_label`: factor with levels `italic(y)` for observations and
#'      `italic(y)[rep]` for simulations.
#' @noRd
melt_and_stack <- function(y, yrep) {
  y_text <- as.character(y_label())
  yrep_text <- as.character(yrep_label())

  molten_preds <- melt_predictions(yrep)

  # Add a level in the labels for the observed y values
  levels(molten_preds$rep_label) <- c(levels(molten_preds$rep_label), y_text)

  y_names <-  attr(yrep, "obs_names") %||% seq_along(y)

  ydat <- tibble::tibble(
    rep_label = factor(y_text, levels = levels(molten_preds$rep_label)),
    rep_id = NA_integer_,
    y_id = seq_along(y),
    y_name = factor(y_names, levels = unique(y_names)),
    value = y)

  data <- dplyr::bind_rows(molten_preds, ydat) %>%
    mutate(
      rep_label = relevel(.data$rep_label, y_text),
      is_y = is.na(.data$rep_id),
      is_y_label = ifelse(.data$is_y, y_text, yrep_text) %>%
        factor(levels = c(y_text, yrep_text)))

  cols <- c("y_id", "y_name", "rep_id", "rep_label",
            "is_y", "is_y_label", "value")
  data[cols]
}


#' Obtain the coverage parameter for simultaneous confidence bands for ECDFs
#'
#' @param N Length of sample.
#' @param L Number of chains. Used for MCMC, defaults to 1 for ppc.
#' @param K Number of equally spaced evaluation points (1:K / K). Defaults to N.
#' @param prob Desired simultaneous coverage (0,1).
#' @param M number of simulations to run, if simulation method is used.
#' @param interpolate_adj Boolean defining whether to interpolate the confidence
#' bands from precomputed values. Interpolation provides a faster plot with the
#' trade-off of possible loss of accuracy.
#' @return The adjusted coverage parameter yielding the desired simultaneous
#'  coverage of the ECDF traces.
#' @noRd
adjust_gamma <- function(N,
                         L = 1,
                         K = N,
                         prob = 0.99,
                         M = 1000,
                         interpolate_adj = FALSE) {
  if (! all_counts(c(K, N, L))) {
    abort("Parameters 'N', 'L' and 'K' must be positive integers.")
  }
  if (prob >= 1 || prob <= 0) {
    abort("Value of 'prob' must be in (0,1).")
  }
  if (is.null(interpolate_adj)) {
    if (K <= 200 || N < 100) {
      interpolate_adj <- FALSE
    } else {
      interpolate_adj <- TRUE
    }
  }
  if (interpolate_adj == TRUE) {
    gamma <- interpolate_gamma(N = N, K = K, prob = prob, L = L)
  } else if (L == 1) {
    gamma <- adjust_gamma_optimize(N = N, K = K, prob = prob)
  } else {
    gamma <- adjust_gamma_simulate(N = N, L = L, K = K, prob = prob, M = M)
  }
  gamma
}

#' Adjust coverage parameter for single sample using the optimization method.
#' @param N Length of sample.
#' @param K Number of equally spaced evaluation points (1:K / K). Defaults to N.
#' @param prob Desired simultaneous coverage (0,1).
#' @return The adjusted coverage parameter yielding the desired simultaneous
#'  coverage of the ECDF traces.
#' @noRd
adjust_gamma_optimize <- function(N, K, prob) {
  target <- function(gamma, prob, N, K) {
    z <- 1:(K - 1) / K
    z1 <- c(0, z)
    z2 <- c(z, 1)

    # pre-compute quantiles and use symmetry for increased efficiency.
    x2_lower <- qbinom(gamma / 2, N, z2)
    x2_upper <- c(N - rev(x2_lower)[2:K], 1)

    # Compute the total probability of trajectories inside the confidence
    # intervals. Initialize the set and corresponding probabilities known
    # to be 0 and 1 for the starting value z1 = 0.
    x1 <- 0
    p_int <- 1
    for (i in seq_along(z1)) {
      p_int <- p_interior(
        p_int = p_int,
        x1 = x1,
        x2 = x2_lower[i]: x2_upper[i],
        z1 = z1[i],
        z2 = z2[i],
        N = N
      )
      x1 <- x2_lower[i]:x2_upper[i]
    }
    return(abs(prob - sum(p_int)))
  }
  optimize(target, c(0, 1 - prob), prob = prob, N = N, K = K)$minimum
}

#' Adjust coverage parameter for multiple chains using the simulation method.
#' In short, 'M' simulations of 'L' standard uniform chains are run and the
#' confidence bands are set to cover 100 * 'prob' % of these simulations.
#' @param N Length of sample.
#' @param L Number of chains. Used for MCMC, defaults to 1 for ppc.
#' @param K Number of equally spaced evaluation points (1:K / K). Defaults to N.
#' @param prob Desired simultaneous coverage (0,1).
#' @param M number of simulations to run.
#' @return The adjusted coverage parameter yielding the desired simultaneous
#'  coverage of the ECDF traces.
#' @noRd
adjust_gamma_simulate <- function(N, L, K, prob, M) {
  gamma <- numeric(M)
  z <- (1:(K - 1)) / K # Rank ECDF evaluation points.
  n <- N * (L - 1)
  k <- floor(z * N * L)
  for (m in seq_len(M)) {
    u <- u_scale(replicate(L, runif(N))) # Fractional ranks of sample chains
    scaled_ecdfs <- apply(outer(u, z, "<="), c(2, 3), sum)
    # Find the smalles marginal probability of the simulation run
    gamma[m] <- 2 * min(
      apply(
        scaled_ecdfs, 1, phyper, m = N, n = n, k = k
      ),
      apply(
        scaled_ecdfs - 1, 1, phyper, m = N, n = n, k = k, lower.tail = FALSE
      )
    )
  }
  alpha_quantile(gamma, 1 - prob)
}

#' Approximate the required adjustement to obtain simultaneous confidence bands
#' of an ECDF plot with interpolation with regards to N and K from precomputed
#' values for a fixed set of prob and L values.
#' @param N Length of sample.
#' @param L Number of chains. Used for MCMC, defaults to 1 for ppc.
#' @param prob Desired simultaneous coverage (0,1).
#' @param K Number of equally spaced evaluation points (1:K / K). Defaults to N.
#' @return The approximated adjusted coverage parameter yielding the desired
#' simultaneous coverage of the ECDF traces.
#' @noRd
interpolate_gamma <- function(N, K, prob, L) {
  # Find the precomputed values useful for the interpolation task.
  vals <- get_interpolation_values(N, K, L, prob)
  # Largest lower bound and smalles upper bound for N among precomputed values.
  N_lb <- max(vals[vals$N <= N, ]$N)
  N_ub <- min(vals[vals$N >= N, ]$N)
  # Approximate largest lower bound and smallest upper bound for gamma.
  log_gamma_lb <- approx(
    x = log(vals[vals$N == N_lb, ]$K),
    y = log(vals[vals$N == N_lb, ]$val),
    xout = log(K)
  )$y
  log_gamma_ub <- approx(
    x = log(vals[vals$N == N_ub, ]$K),
    y = log(vals[vals$N == N_ub, ]$val),
    xout = log(K)
  )$y
  if (N_ub == N_lb) {
    log_gamma_approx <- log_gamma_lb
  } else {
    # Approximate log_gamma for the desired value of N.
    log_gamma_approx <- approx(
      x = log(c(N_lb, N_ub)),
      y = c(log_gamma_lb, log_gamma_ub),
      xout = log(N)
    )$y
  }
  exp(log_gamma_approx)
}

#' Filter the precomputed values useful for the interpolation task given to
#' interpolate_gamma. Check, if the task is possible with the availabel data.
#' @param N Length of sample.
#' @param K Number of equally spaced evaluation points (1:K / K). Defaults to N.
#' @param L Number of chains. Used for MCMC, defaults to 1 for ppc.
#' @param prob Desired simultaneous coverage (0,1).
#' @return A data.frame containing the relevant precomputed values.
#' @noRd
get_interpolation_values <- function(N, K, L, prob) {
  for (dim in c("L", "prob")) {
    if (all(get(dim) != .gamma_adj[, dim])) {
      stop(paste(
        "No precomputed values to interpolate from for '", dim, "' = ",
        get(dim),
        ".\n",
        "Values of '", dim, "' available for interpolation: ",
        paste(unique(.gamma_adj[, dim]), collapse = ", "),
        ".",
        sep = ""
      ))
    }
  }
  vals <- .gamma_adj[.gamma_adj$L == L & .gamma_adj$prob == prob, ]
  if (N > max(vals$N)) {
    stop(paste(
      "No precomputed values to interpolate from for sample length of ",
      N,
      ".\n",
      "Please use a subsample of length ",
      max(vals$N),
      " or smaller, or consider setting 'interpolate_adj' = FALSE.",
      sep = ""
    ))
  }
  if (N < min(vals$N)) {
    stop(paste(
      "No precomputed values to interpolate from for sample length of ",
      N,
      ".\n",
      "Please use a subsample of length ",
      min(vals$N),
      " or larger, or consider setting 'interpolate_adj' = FALSE.",
      sep = ""
    ))
  }
  if (K > max(vals[vals$N <= N, ]$K)) {
    stop(paste(
      "No precomputed values available for interpolation for 'K' = ",
      K,
      ".\n",
      "Try either setting a value of 'K' <= ",
      max(vals[vals$N <= N, ]$K),
      "or 'interpolate_adj' = FALSE.",
      sep = ""
    ))
  }
  if (K < min(vals[vals$N <= N, ]$K)) {
    stop(paste(
      "No precomputed values available for interpolation for 'K' = ",
      K,
      ".\n",
      "Try either setting a value of 'K' >= ",
      min(vals[vals$N <= N, ]$K),
      " or 'interpolate_adj' = FALSE.",
      sep = ""
    ))
  }
  vals
}

#' A helper function for 'adjust_gamma_optimize' defining the probability that
#' a scaled ECDF stays within the supplied bounds between two evaluation points.
#' @param p_int For each value in x1, the probability that the ECDF has stayed
#' within the bounds until z1 and takes the value in x1 at z1.
#' @param x1 Vector of scaled ECDF values at the left end of the interval, z1.
#' @param x2 Vector of scaled ECDF values at the right end of the interval, z2.
#' @param z1 Left evaluation point in [0,1]
#' @param z2 Right evaluation point in [0,1] with z2 > z1.
#' @param N Total number of values in the sample.
#' @return A vector containing the probability to transitioning from the values
#' in x1 to each of the values in x2 weighted by the probabilities in p_int.
#' @noRd
p_interior <- function(p_int, x1, x2, z1, z2, N) {
  # Ratio between the length of the evaluation interval and the total length of
  # the interval left to cover by ECDF.
  z_tilde <- (z2 - z1) / (1 - z1)
  # Number of samples left to cover by ECDF.
  N_tilde <- rep(N - x1, each = length(x2))

  p_int <- rep(p_int, each = length(x2))
  x_diff <- outer(x2, x1, "-")
  # Pobability of each transition from a value in x1 to a value in x2.
  p_x2_int <- p_int * dbinom(x_diff, N_tilde, z_tilde)
  rowSums(p_x2_int)
}

#' A helper function for 'adjust_alpha_simulate'
#' 100 * `alpha` percent of the trials in 'gamma' are allowed to be rejected.
#' In case of ties, return the largest value dominating at most
#' 100 * (alpha + tol) percent of the values.
#' @noRd
alpha_quantile <- function(gamma, alpha, tol = 0.001) {
  a <- unname(quantile(gamma, probs = alpha))
  a_tol <- unname(quantile(gamma, probs = alpha + tol))
  if (a == a_tol) {
    if (min(gamma) < a) {
      # take the largest value that doesn't exceed the tolerance.
      a <- max(gamma[gamma < a])
    }
  }
  a
}

#' Compute simultaneous confidence intervals with the given adjusted coverage
#'  parameter gamma.
#' @param gamma Adjusted coverage parameter for the marginal distribution
#'  (binomial for PIT values and hypergeometric for rank transformed chains).
#' @param N Sample length.
#' @param K Number of uniformly spaced evaluation points.
#' @param L Number of MCMC-chains. (1 for ppc)
#' @return A list with upper and lower confidence interval values at the
#' evaluation points.
#' @noRd
ecdf_intervals <- function(gamma, N, K, L = 1) {
  lims <- list()
  z <- seq(0, 1, length.out = K + 1)
  if (L == 1) {
    lims$lower <- qbinom(gamma / 2, N, z)
    lims$upper <- qbinom(1 - gamma / 2, N, z)
  } else {
    n <- N * (L - 1)
    k <- floor(z * L * N)
    lims$lower <- qhyper(gamma / 2, N, n, k)
    lims$upper <- qhyper(1 - gamma / 2, N, n, k)
  }
  lims
}

#' Helper for 'adjust_gamma_simulate`
#' Transforms observations in 'x' into their corresponding fractional ranks.
#' @noRd
u_scale <- function(x) {
  array(rank(x) / length(x), dim = dim(x), dimnames = dimnames(x))
}

# labels ----------------------------------------------------------------
create_rep_ids <- function(ids) paste('italic(y)[rep] (', ids, ")")
y_label <- function() expression(italic(y))
yrep_label <- function() expression(italic(y)[rep])
ypred_label <- function() expression(italic(y)[pred])