File: mcmc-diagnostics-nuts.R

package info (click to toggle)
r-cran-bayesplot 1.14.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,288 kB
  • sloc: sh: 13; makefile: 2
file content (563 lines) | stat: -rw-r--r-- 17,684 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#' Diagnostic plots for the No-U-Turn-Sampler (NUTS)
#'
#' Diagnostic plots for the No-U-Turn-Sampler (NUTS), the default MCMC algorithm
#' used by [Stan](https://mc-stan.org). See the **Plot Descriptions** section,
#' below.
#'
#' @name MCMC-nuts
#' @aliases NUTS
#' @family MCMC
#'
#' @param x A molten data frame of NUTS sampler parameters, either created by
#'   [nuts_params()] or in the same form as the object returned by
#'   [nuts_params()].
#' @param lp A molten data frame of draws of the log-posterior or, more
#'   commonly, of a quantity equal to the log-posterior up to a constant.
#'   `lp` should either be created via [log_posterior()] or be an
#'   object with the same form as the object returned by
#'   [log_posterior()].
#' @param chain A positive integer for selecting a particular chain. The default
#'   (`NULL`) is to merge the chains before plotting. If `chain = k`
#'   then the plot for chain `k` is overlaid (in a darker shade but with
#'   transparency) on top of the plot for all chains. The `chain` argument
#'   is not used by `mcmc_nuts_energy()`.
#' @param ... Currently ignored.
#'
#' @return A gtable object (the result of calling
#'   [gridExtra::arrangeGrob()]) created from several ggplot objects,
#'   except for `mcmc_nuts_energy()`, which returns a ggplot object.
#'
#' @section Quick Definitions:
#' For more details see Stan Development Team (2016) and Betancourt (2017).
#' * `accept_stat__`: the average acceptance probabilities of all
#'   possible samples in the proposed tree.
#' * `divergent__`: the number of leapfrog transitions with diverging
#'   error. Because NUTS terminates at the first divergence this will be either
#'   0 or 1 for each iteration.
#' * `stepsize__`: the step size used by NUTS in its Hamiltonian
#'   simulation.
#' * `treedepth__`: the depth of tree used by NUTS, which is the log
#'   (base 2) of the number of leapfrog steps taken during the Hamiltonian
#'   simulation.
#' * `energy__`: the value of the Hamiltonian (up to an additive
#'   constant) at each iteration.
#'
#' @section Plot Descriptions:
#' \describe{
#'   \item{`mcmc_nuts_acceptance()`}{
#'   Three plots:
#'   * Histogram of `accept_stat__` with vertical lines indicating the
#'     mean (solid line) and median (dashed line).
#'   * Histogram of `lp__` with vertical
#'     lines indicating the mean (solid line) and median (dashed line).
#'   * Scatterplot of `accept_stat__` vs `lp__`.
#'   }
#'
#'   \item{`mcmc_nuts_divergence()`}{
#'   Two plots:
#'   * Violin plots of `lp__|divergent__=1` and `lp__|divergent__=0`.
#'   * Violin plots of `accept_stat__|divergent__=1` and
#'     `accept_stat__|divergent__=0`.
#'   }
#'
#'   \item{`mcmc_nuts_stepsize()`}{
#'   Two plots:
#'   * Violin plots of `lp__` by chain ordered by `stepsize__` value.
#'   * Violin plots of `accept_stat__` by chain ordered by `stepsize__` value.
#'   }
#'
#'   \item{`mcmc_nuts_treedepth()`}{
#'   Three plots:
#'   * Violin plots of `lp__` by value of `treedepth__`.
#'   * Violin plots of `accept_stat__` by value of `treedepth__`.
#'   * Histogram of `treedepth__`.
#'   }
#'
#'   \item{`mcmc_nuts_energy()`}{
#'   Overlaid histograms showing `energy__` vs the change in
#'   `energy__`. See Betancourt (2016) for details.
#'   }
#' }
#'
#' @template reference-betancourt
#' @template reference-nuts
#' @template reference-stan-manual
#'
#' @seealso
#' * The [Visual MCMC Diagnostics](https://mc-stan.org/bayesplot/articles/visual-mcmc-diagnostics.html)
#'   vignette.
#' * Several other plotting functions are not NUTS-specific but take optional
#'   extra arguments if the model was fit using NUTS:
#'   * [mcmc_trace()]: show divergences as tick marks below the
#'     trace plot.
#'   * [mcmc_parcoord()]: change the color/size/transparency of lines
#'     corresponding to divergences.
#'   * [mcmc_scatter()]: change the color/size/shape of points
#'     corresponding to divergences.
#'   * [mcmc_pairs()]: change the color/size/shape of points
#'     corresponding divergences and/or max treedepth saturation.
#'
#' @examples
#' \dontrun{
#' library(ggplot2)
#' library(rstanarm)
#' fit <- stan_glm(mpg ~ wt + am, data = mtcars, iter = 1000, refresh = 0)
#' np <- nuts_params(fit)
#' lp <- log_posterior(fit)
#'
#' color_scheme_set("brightblue")
#' mcmc_nuts_acceptance(np, lp)
#' mcmc_nuts_acceptance(np, lp, chain = 2)
#'
#' mcmc_nuts_divergence(np, lp)
#' mcmc_nuts_stepsize(np, lp)
#' mcmc_nuts_treedepth(np, lp)
#'
#' color_scheme_set("red")
#' mcmc_nuts_energy(np)
#' mcmc_nuts_energy(np, merge_chains = TRUE, binwidth = .15)
#' mcmc_nuts_energy(np) +
#'  facet_wrap(vars(Chain), nrow = 1) +
#'  coord_fixed(ratio = 150) +
#'  ggtitle("NUTS Energy Diagnostic")
#' }
#'
NULL


#' @rdname MCMC-nuts
#' @export
#' @template args-hist
#'
mcmc_nuts_acceptance <-
  function(x,
           lp,
           chain = NULL,
           ...,
           binwidth = NULL,
           bins = NULL,
           breaks = NULL) {
    suggested_package("gridExtra")
    check_ignored_arguments(...)

    x <- validate_nuts_data_frame(x, lp)
    n_chain <- length(unique(lp$Chain))
    chain <- validate_enough_chains(chain, num_chains(x))
    overlay_chain <- !is.null(chain)

    accept_stat <- dplyr::filter(x, .data$Parameter == "accept_stat__")
    data <- suppressWarnings(
      dplyr::bind_rows(accept_stat, data.frame(lp, Parameter = "lp__"))
    )

    grp_par <- group_by(data, .data$Parameter)
    stats_par <- summarise(grp_par,
                           Mean = mean(.data$Value),
                           Median = median(.data$Value))

    hists <- ggplot(data, aes(x = .data$Value, y = after_stat(density))) +
      geom_histogram(
        fill = get_color("l"),
        color = get_color("lh"),
        linewidth = 0.25,
        na.rm = TRUE,
        binwidth = binwidth,
        bins = bins,
        breaks = breaks
      ) +
      bayesplot_theme_get()

    if (!overlay_chain) {
      hists <- hists +
        geom_vline(
          aes(xintercept = .data$Mean),
          data = stats_par,
          color = get_color("dh")
        ) +
        geom_vline(
          aes(xintercept = .data$Median),
          data = stats_par,
          color = get_color("d"),
          linetype = 2
        )
    }
    hists <- hists +
      dont_expand_y_axis(c(0.005, 0)) +
      facet_wrap(vars(.data$Parameter), scales = "free") +
      yaxis_text(FALSE) +
      yaxis_title(FALSE) +
      yaxis_ticks(FALSE) +
      xaxis_title(FALSE)

    scatter_data <- data.frame(
      x = accept_stat$Value,
      y = lp$Value
    )
    scatter <- ggplot(scatter_data) +
      geom_point(
        aes(x = .data$x, y = .data$y),
        alpha = 0.75,
        shape = 21,
        fill = get_color(ifelse(overlay_chain, "l", "m")),
        color = get_color(ifelse(overlay_chain, "lh", "mh"))
      ) +
      labs(x = "accept_stat__", y = "lp__") +
      bayesplot_theme_get()

    if (overlay_chain) {
      hists <- hists +
        geom_histogram(
          data = dplyr::filter(data, .data$Chain == chain),
          fill = get_color("d"),
          color = NA,
          alpha = 0.5,
          na.rm = TRUE,
          binwidth = binwidth,
          bins = bins,
          breaks = breaks
        )

      chain_scatter_data <- data.frame(
        x = accept_stat$Value[accept_stat$Chain == chain],
        y = lp$Value[lp$Chain == chain]
      )
      scatter <- scatter +
        geom_point(
          aes(x = .data$x, y = .data$y),
          color = get_color("d"),
          alpha = 0.5,
          data = chain_scatter_data
        )
    }
    nuts_plot <- gridExtra::arrangeGrob(hists, scatter, nrow = 2)
    as_bayesplot_grid(nuts_plot)
  }


#' @rdname MCMC-nuts
#' @export
mcmc_nuts_divergence <- function(x, lp, chain = NULL, ...) {
  suggested_package("gridExtra")
  check_ignored_arguments(...)

  x <- validate_nuts_data_frame(x, lp)
  chain <- validate_enough_chains(chain, num_chains(x))
  overlay_chain <- !is.null(chain)

  accept_stat <- dplyr::filter(x, .data$Parameter == "accept_stat__")
  divergent <- dplyr::filter(x, .data$Parameter == "divergent__")
  divergent$Value <- factor(divergent$Value, levels = c(0, 1),
                            labels = c("No divergence", "Divergence"))

  violin_lp_data <- data.frame(divergent, lp = lp$Value)
  violin_lp <- ggplot(violin_lp_data, aes(x = .data$Value, y = .data$lp)) +
    geom_violin(fill = get_color("l"), color = get_color("lh")) +
    ylab("lp__") +
    xaxis_title(FALSE) +
    bayesplot_theme_get()

  violin_accept_stat_data <- data.frame(divergent, as = accept_stat$Value)
  violin_accept_stat <- ggplot(violin_accept_stat_data, aes(x = .data$Value, y = .data$as)) +
    geom_violin(fill = get_color("l"), color = get_color("lh")) +
    ylab("accept_stat__") +
    scale_y_continuous(limits = c(NA, 1.05)) +
    xaxis_title(FALSE) +
    bayesplot_theme_get()

  div_count <- table(divergent$Value)[[2]]
  div_text <- ngettext(div_count, "divergence", "divergences")
  div_count_label <- paste(div_count, div_text)

  if (!is.null(chain)) {
    violin_lp <- violin_lp +
      chain_violin(violin_lp_data, chain)
    violin_accept_stat <- violin_accept_stat +
      chain_violin(violin_accept_stat_data, chain)

    div_count_by_chain <-
      table(divergent$Value, divergent$Chain)["Divergence", chain]
    div_count_label <-
      paste0(div_count_label, " (", div_count_by_chain,
             " from chain ", chain, ")")
  }
  violin_lp <- violin_lp + labs(subtitle = div_count_label)
  nuts_plot <- gridExtra::arrangeGrob(violin_lp, violin_accept_stat, nrow = 2)
  as_bayesplot_grid(nuts_plot)
}


#' @rdname MCMC-nuts
#' @export
mcmc_nuts_stepsize <- function(x, lp, chain = NULL, ...) {
  suggested_package("gridExtra")
  check_ignored_arguments(...)

  x <- validate_nuts_data_frame(x, lp)
  chain <- validate_enough_chains(chain, num_chains(x))
  overlay_chain <- !is.null(chain)

  stepsize <- dplyr::filter(x, .data$Parameter == "stepsize__")
  accept_stat <- dplyr::filter(x, .data$Parameter == "accept_stat__")

  stepsize_by_chain <- stepsize %>%
    group_by(.data$Chain) %>%
    summarise(ss = dplyr::first(.data$Value))

  stepsize_labels_text <- stepsize_by_chain %>%
    arrange(.data$ss) %>%
    mutate(value = format(round(.data$ss, 3), digits = 3),
           label = paste0(.data$value, "\n(chain ", .data$Chain, ")")) %>%
    pull()

  stepsize_labels <- scale_x_discrete(labels = stepsize_labels_text)

  violin_lp_data <- dplyr::left_join(lp, stepsize_by_chain, by = "Chain")
  violin_lp <- ggplot(violin_lp_data, aes(x = as.factor(.data$ss), y = .data$Value)) +
    geom_violin(fill = get_color("l"), color = get_color("lh")) +
    ylab("lp__") +
    stepsize_labels +
    xaxis_title(FALSE) +
    bayesplot_theme_get()

  violin_accept_stat_data <-
    dplyr::left_join(accept_stat, stepsize_by_chain, by = "Chain")
  violin_accept_stat <-
    ggplot(violin_accept_stat_data, aes(x = as.factor(.data$ss), y = .data$Value)) +
    geom_violin(fill = get_color("l"), color = get_color("lh")) +
    ylab("accept_stat__") +
    scale_y_continuous(limits = c(NA, 1.05)) +
    stepsize_labels +
    xaxis_title(FALSE) +
    bayesplot_theme_get()

  if (!is.null(chain)) {
    violin_lp <- violin_lp +
      chain_violin(violin_lp_data, chain)
    violin_accept_stat <- violin_accept_stat +
      chain_violin(violin_accept_stat_data, chain)
  }
  nuts_plot <- gridExtra::arrangeGrob(violin_lp, violin_accept_stat, nrow = 2)
  as_bayesplot_grid(nuts_plot)
}


#' @rdname MCMC-nuts
#' @export
mcmc_nuts_treedepth <- function(x, lp, chain = NULL, ...) {
  suggested_package("gridExtra")
  check_ignored_arguments(...)

  x <- validate_nuts_data_frame(x, lp)
  chain <- validate_enough_chains(chain, num_chains(x))
  overlay_chain <- !is.null(chain)

  treedepth <- dplyr::filter(x, .data$Parameter == "treedepth__")
  accept_stat <- dplyr::filter(x, .data$Parameter == "accept_stat__")

  hist_td <- ggplot(treedepth, aes(x = .data$Value, y = after_stat(density))) +
    geom_histogram(
      fill = get_color("l"),
      color = get_color("lh"),
      linewidth = 0.2,
      na.rm = TRUE,
      binwidth = 1
    ) +
    xlab("treedepth__")  +
    bayesplot_theme_get() +
    yaxis_text(FALSE) +
    yaxis_title(FALSE) +
    yaxis_ticks(FALSE)

  violin_lp_data <- data.frame(treedepth, lp = lp$Value)
  violin_lp <-
    ggplot(violin_lp_data, aes(x = factor(.data$Value), y = .data$lp)) +
    geom_violin(fill = get_color("l"), color = get_color("lh")) +
    labs(x = "treedepth__", y = "lp__") +
    bayesplot_theme_get()

  violin_accept_stat_data <- data.frame(treedepth, as = accept_stat$Value)
  violin_accept_stat <-
    ggplot(violin_accept_stat_data, aes(x = factor(.data$Value), y = .data$as)) +
    geom_violin(fill = get_color("l"), color = get_color("lh")) +
    labs(x = "treedepth__", y = "accept_stat__") +
    scale_y_continuous(breaks = c(0, 0.5, 1)) +
    bayesplot_theme_get()

  if (overlay_chain) {
    hist_td <- hist_td +
      geom_histogram(
        data = dplyr::filter(treedepth, .data$Chain == chain),
        fill = get_color("d"),
        color = NA,
        alpha = 0.5,
        na.rm = TRUE,
        binwidth = 1
      ) +
      dont_expand_y_axis()

    violin_lp <- violin_lp +
      chain_violin(violin_lp_data, chain)
    violin_accept_stat <- violin_accept_stat +
      chain_violin(violin_accept_stat_data, chain)
  }

  nuts_plot <- gridExtra::grid.arrange(
    gridExtra::arrangeGrob(violin_lp, violin_accept_stat, nrow = 1),
    hist_td,
    nrow = 2
  )
  as_bayesplot_grid(nuts_plot)
}


#' @rdname MCMC-nuts
#' @export
#' @param alpha For `mcmc_nuts_energy()` only, the transparency (alpha) level
#'   in `[0,1]` used for the overlaid histogram.
#' @param merge_chains For `mcmc_nuts_energy()` only, should all chains be
#'   merged or displayed separately? The default is `FALSE`, i.e., to show
#'   the chains separately.
#'
mcmc_nuts_energy <-
  function(x,
           ...,
           binwidth = NULL,
           bins = NULL,
           breaks = NULL,
           alpha = 0.5,
           merge_chains = FALSE) {
    check_ignored_arguments(...)

    x <- validate_nuts_data_frame(x)
    energy <- dplyr::filter(x, .data$Parameter == "energy__")

    # lag() (stats::lag()) here doesn't work, but dplyr::lag() does
    data <- energy %>%
      group_by(.data$Chain) %>%
      mutate(
        Ediff = .data$Value - dplyr::lag(.data$Value),
        E_centered = .data$Value - mean(.data$Value),
        Ediff_centered = .data$Ediff - mean(.data$Ediff, na.rm = TRUE)
      )

    fills <- set_names(get_color(c("l", "m")), c("E_fill", "Ediff_fill"))
    clrs <- set_names(get_color(c("lh", "mh")), c("E_fill", "Ediff_fill"))
    aes_labs <- c(expression(pi[E]), expression(pi[paste(Delta, E)]))

    graph <- ggplot(data, aes(y = after_stat(density))) +
      geom_histogram(
        aes(
          x = .data$Ediff_centered,
          fill = "Ediff_fill",
          color = "Ediff_fill"
        ),
        linewidth = 0.25,
        na.rm = TRUE,
        binwidth = binwidth,
        bins = bins,
        breaks = breaks
      ) +
      geom_histogram(
        aes(
          x = .data$E_centered,
          fill = "E_fill",
          color = "E_fill"
        ),
        linewidth = 0.25,
        na.rm = TRUE,
        alpha = alpha,
        binwidth = binwidth,
        bins = bins,
        breaks = breaks
      ) +
      scale_fill_manual("", values = fills, labels = aes_labs) +
      scale_color_manual("", values = clrs, labels = aes_labs) +
      dont_expand_y_axis(c(0.005, 0)) +
      scale_x_continuous(expand = c(0.2, 0)) +
      labs(y = NULL, x = expression(E - bar(E))) +
      bayesplot_theme_get() +
      space_legend_keys()  +
      theme(legend.text = element_text(size = rel(1.1))) +
      yaxis_text(FALSE) +
      yaxis_title(FALSE) +
      yaxis_ticks(FALSE)

    if (merge_chains) {
      return(graph)
    }

    graph +
      facet_wrap(vars(.data$Chain)) +
      force_axes_in_facets()
  }


# internal ----------------------------------------------------------------
validate_enough_chains <- function(chain = NULL, n_chain) {
  if (!is.null(chain)) {
    stopifnot(chain >= 1)
    if (!isTRUE(n_chain >= chain)) {
      abort(paste("'chain' is", chain, "but only", n_chain, "chains found."))
    }
  }
  chain
}

#' @param x data frame with nuts params
#' @param lp data frame with `lp__`
#' @noRd
validate_nuts_data_frame <- function(x, lp) {
  if (!is.data.frame(x)) {
    abort("NUTS parameters should be in a data frame.")
  }

  valid_cols <- sort(c("Iteration", "Parameter", "Value", "Chain"))
  if (!identical(sort(colnames(x)), valid_cols)) {
    abort(paste(
      "NUTS parameter data frame must have columns:",
      paste(valid_cols, collapse = ", ")
    ))
  }

  if (missing(lp)) {
    lp <- NULL
  }
  if (!is.null(lp)) {
    if (!is.data.frame(lp)) {
      abort("lp should be in a data frame.")
    }

    valid_lp_cols <- sort(c("Iteration", "Value", "Chain"))
    if (!identical(sort(colnames(lp)), valid_lp_cols)) {
      abort(paste(
        "lp data frame must have columns:",
        paste(valid_lp_cols, collapse = ", ")
      ))
    }

    n_chain <- num_chains(x)
    n_lp_chain <- num_chains(lp)
    if (n_chain != n_lp_chain) {
      abort(paste(
        "Number of chains for NUTS parameters is", n_chain,
        "but number of chains for lp is", n_lp_chain
      ))
    }
  }

  x
}

chain_violin <-
  function(df,
           chain,
           fill = "d",
           color = NA,
           alpha = 0.5) {
    geom_violin(
      data = dplyr::filter(df, .data$Chain == chain),
      fill = get_color(fill),
      color = color,
      alpha = alpha
    )
  }