1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
|
#' Plot interval estimates from MCMC draws
#'
#' Plot central (quantile-based) posterior interval estimates from MCMC draws.
#' See the **Plot Descriptions** section, below, for details.
#'
#' @name MCMC-intervals
#' @family MCMC
#'
#' @template args-mcmc-x
#' @template args-pars
#' @template args-regex_pars
#' @template args-transformations
#' @param ... Currently unused.
#' @param prob The probability mass to include in the inner interval (for
#' `mcmc_intervals()`) or in the shaded region (for `mcmc_areas()`). The
#' default is `0.5` (50% interval) and `1` for `mcmc_areas_ridges()`.
#' @param prob_outer The probability mass to include in the outer interval. The
#' default is `0.9` for `mcmc_intervals()` (90% interval) and
#' `1` for `mcmc_areas()` and for `mcmc_areas_ridges()`.
#' @param area_method How to constrain the areas in `mcmc_areas()`. The
#' default is `"equal area"`, setting the density curves to have the same
#' area. With `"equal height"`, the curves are scaled so that the highest
#' points across the curves are the same height. The method `"scaled
#' height"` tries a compromise between to the two: the heights from
#' `"equal height"` are scaled using `height*sqrt(height)`
#' @param point_est The point estimate to show. Either `"median"` (the
#' default), `"mean"`, or `"none"`.
#' @param inner_size,outer_size For `mcmc_intervals()`, the size of
#' the inner and interval segments, respectively.
#' @param point_size For `mcmc_intervals()`, the size of point estimate.
#' @param rhat An optional numeric vector of R-hat estimates, with one element
#' per parameter included in `x`. If `rhat` is provided, the intervals/areas
#' and point estimates in the resulting plot are colored based on R-hat value.
#' See [rhat()] for methods for extracting R-hat estimates.
#' @template args-density-controls
#'
#' @template return-ggplot-or-data
#'
#' @section Plot Descriptions:
#' \describe{
#' \item{`mcmc_intervals()`}{
#' Plots of uncertainty intervals computed from posterior draws with all
#' chains merged.
#' }
#' \item{`mcmc_areas()`}{
#' Density plots computed from posterior draws with all chains merged,
#' with uncertainty intervals shown as shaded areas under the curves.
#' }
#' \item{`mcmc_areas_ridges()`}{
#' Density plot, as in `mcmc_areas()`, but drawn with overlapping
#' ridgelines. This plot provides a compact display of (hierarchically)
#' related distributions.
#' }
#' }
#'
#' @examples
#' set.seed(9262017)
#'
#' # load ggplot2 to use its functions to modify our plots
#' library(ggplot2)
#'
#' # some parameter draws to use for demonstration
#' x <- example_mcmc_draws(params = 6)
#' dim(x)
#' dimnames(x)
#'
#' color_scheme_set("brightblue")
#' mcmc_intervals(x)
#' mcmc_intervals(x, pars = c("beta[1]", "beta[2]"))
#' mcmc_areas(x, regex_pars = "beta\\[[1-3]\\]", prob = 0.8) +
#' labs(
#' title = "Posterior distributions",
#' subtitle = "with medians and 80% intervals"
#' )
#'
#' color_scheme_set("red")
#' p <- mcmc_areas(
#' x,
#' pars = c("alpha", "beta[4]"),
#' prob = 2/3,
#' prob_outer = 0.9,
#' point_est = "mean",
#' border_size = 1.5 # make the ridgelines fatter
#' )
#' plot(p)
#'
#' \donttest{
#' # control spacing at top and bottom of plot
#' # see ?ggplot2::expansion
#' p + scale_y_discrete(
#' limits = c("beta[4]", "alpha"),
#' expand = expansion(add = c(1, 2))
#' )
#' p + scale_y_discrete(
#' limits = c("beta[4]", "alpha"),
#' expand = expansion(add = c(.1, .3))
#' )
#'
#' # relabel parameters
#' p + scale_y_discrete(
#' labels = c("alpha" = "param label 1",
#' "beta[4]" = "param label 2")
#')
#'
#' # relabel parameters and define the order
#' p + scale_y_discrete(
#' labels = c("alpha" = "param label 1",
#' "beta[4]" = "param label 2"),
#' limits = c("beta[4]", "alpha")
#' )
#'
#' # color by rhat value
#' color_scheme_set("blue")
#' fake_rhat_values <- c(1, 1.07, 1.3, 1.01, 1.15, 1.005)
#' mcmc_intervals(x, rhat = fake_rhat_values)
#'
#' # get the dataframe that is used in the plotting functions
#' mcmc_intervals_data(x)
#' mcmc_intervals_data(x, rhat = fake_rhat_values)
#' mcmc_areas_data(x, pars = "alpha")
#'
#' color_scheme_set("gray")
#' p <- mcmc_areas(x, pars = c("alpha", "beta[4]"), rhat = c(1, 1.1))
#' p + legend_move("bottom")
#' p + legend_move("none") # or p + legend_none()
#'
#' }
#'
#' # Different area calculations
#' b3 <- c("beta[1]", "beta[2]", "beta[3]")
#'
#' mcmc_areas(x, pars = b3, area_method = "equal area") +
#' labs(
#' title = "Curves have same area",
#' subtitle = "A wide, uncertain interval is spread thin when areas are equal"
#' )
#'
#' mcmc_areas(x, pars = b3, area_method = "equal height") +
#' labs(
#' title = "Curves have same maximum height",
#' subtitle = "Local curvature is clearer but more uncertain curves use more area"
#' )
#'
#' mcmc_areas(x, pars = b3, area_method = "scaled height") +
#' labs(
#' title = "Same maximum heights but heights scaled by square-root",
#' subtitle = "Compromise: Local curvature is accentuated and less area is used"
#' )
#'
#' \donttest{
#' # apply transformations
#' mcmc_intervals(
#' x,
#' pars = c("beta[2]", "sigma"),
#' transformations = list("sigma" = "log", "beta[2]" = function(x) x + 3)
#' )
#'
#' # apply same transformation to all selected parameters
#' mcmc_intervals(x, regex_pars = "beta", transformations = "exp")
#' }
#'
#' \dontrun{
#' # example using fitted model from rstanarm package
#' library(rstanarm)
#' fit <- stan_glm(
#' mpg ~ 0 + wt + factor(cyl),
#' data = mtcars,
#' iter = 500,
#' refresh = 0
#' )
#' x <- as.matrix(fit)
#'
#' color_scheme_set("teal")
#' mcmc_intervals(x, point_est = "mean", prob = 0.8, prob_outer = 0.95)
#' mcmc_areas(x, regex_pars = "cyl", bw = "SJ",
#' rhat = rhat(fit, regex_pars = "cyl"))
#' }
#'
#' \dontrun{
#' # Example of hierarchically related parameters
#' # plotted with ridgelines
#' m <- shinystan::eight_schools@posterior_sample
#' mcmc_areas_ridges(m, pars = "mu", regex_pars = "theta", border_size = 0.75) +
#' ggtitle("Treatment effect on eight schools (Rubin, 1981)")
#' }
#'
NULL
#' @rdname MCMC-intervals
#' @export
mcmc_intervals <- function(x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
prob = 0.5,
prob_outer = 0.9,
point_est = c("median", "mean", "none"),
outer_size = 0.5,
inner_size = 2,
point_size = 4,
rhat = numeric()) {
check_ignored_arguments(...)
data <- mcmc_intervals_data(x, pars, regex_pars, transformations,
prob = prob, prob_outer = prob_outer,
point_est = point_est, rhat = rhat)
color_by_rhat <- rlang::has_name(data, "rhat_rating")
no_point_est <- all(data$point_est == "none")
x_lim <- range(c(data$ll, data$hh))
x_range <- diff(x_lim)
x_lim[1] <- x_lim[1] - 0.05 * x_range
x_lim[2] <- x_lim[2] + 0.05 * x_range
# faint vertical line at zero if zero is within x_lim
layer_vertical_line <- if (0 > x_lim[1] && 0 < x_lim[2]) {
vline_0(color = "gray90", linewidth = 0.5)
} else {
geom_ignore()
}
args_outer <- list(
mapping = aes(x = .data$ll, xend = .data$hh, y = .data$parameter, yend = .data$parameter),
color = get_color("mid"),
linewidth = outer_size
)
args_inner <- list(
mapping = aes(x = .data$l, xend = .data$h, y = .data$parameter, yend = .data$parameter),
linewidth = inner_size,
show.legend = FALSE
)
args_point <- list(
mapping = aes(x = .data$m, y = .data$parameter),
data = data,
size = point_size,
shape = 21
)
if (color_by_rhat) {
args_inner$mapping <- args_inner$mapping %>%
modify_aes(color = .data$rhat_rating)
args_point$mapping <- args_point$mapping %>%
modify_aes(color = .data$rhat_rating,
fill = .data$rhat_rating)
} else {
args_inner$color <- get_color("dark")
args_point$color <- get_color("dark_highlight")
args_point$fill <- get_color("light")
}
point_func <- if (no_point_est) geom_ignore else geom_point
layer_outer <- do.call(geom_segment, args_outer)
layer_inner <- do.call(geom_segment, args_inner)
layer_point <- do.call(point_func, args_point)
# Do something or add an invisible layer
if (color_by_rhat) {
scale_color <- scale_color_diagnostic("rhat")
scale_fill <- scale_fill_diagnostic("rhat")
} else {
scale_color <- geom_ignore()
scale_fill <- geom_ignore()
}
ggplot(data) +
layer_vertical_line +
layer_outer +
layer_inner +
layer_point +
scale_color +
scale_fill +
scale_y_discrete(limits = unique(rev(data$parameter))) +
xlim(x_lim) +
bayesplot_theme_get() +
legend_move(ifelse(color_by_rhat, "top", "none")) +
yaxis_text(face = "bold") +
yaxis_title(FALSE) +
yaxis_ticks(linewidth = 1) +
xaxis_title(FALSE)
}
#' @rdname MCMC-intervals
#' @export
#' @param border_size For `mcmc_areas()` and `mcmc_areas_ridges()`, the size of
#' the ridgelines.
mcmc_areas <- function(x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
area_method = c("equal area", "equal height", "scaled height"),
prob = 0.5,
prob_outer = 1,
point_est = c("median", "mean", "none"),
rhat = numeric(),
border_size = NULL,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL) {
check_ignored_arguments(...)
area_method <- match.arg(area_method)
data <- mcmc_areas_data(
x, pars, regex_pars, transformations,
prob = prob, prob_outer = prob_outer,
point_est = point_est, rhat = rhat,
bw = bw, adjust = adjust, kernel = kernel, n_dens = n_dens
)
datas <- split(data, data$interval)
# Use a dummy empty dataframe if no point estimate
no_point_est <- !rlang::has_name(datas, "point")
datas$point <- if (no_point_est) {
dplyr::filter(datas$inner, FALSE)
} else {
datas$point
}
color_by_rhat <- rlang::has_name(data, "rhat_rating")
# faint vertical line at zero if zero is within x_lim
x_lim <- range(datas$outer$x)
x_range <- diff(x_lim)
x_lim[1] <- x_lim[1] - 0.05 * x_range
x_lim[2] <- x_lim[2] + 0.05 * x_range
layer_vertical_line <- if (0 > x_lim[1] && 0 < x_lim[2]) {
vline_0(color = "gray90", linewidth = 0.5)
} else {
geom_ignore()
}
# Need to include rhat rating as a grouping variable if coloring by rhat so
# that datas$bottom has an rhat_rating column that can map to color aesthetic
groups <- if (color_by_rhat) {
rlang::syms(c("parameter", "rhat_rating"))
} else {
rlang::syms(c("parameter"))
}
datas$bottom <- datas$outer %>%
group_by(!!! groups) %>%
summarise(
ll = min(.data$x),
hh = max(.data$x),
.groups = "drop_last"
) %>%
ungroup()
args_bottom <- list(
mapping = aes(x = .data$ll, xend = .data$hh, yend = .data$parameter),
data = datas$bottom
)
args_inner <- list(
mapping = aes(scale = 0.9),
data = datas$inner
)
args_point <- list(
mapping = aes(scale = 0.9),
data = datas$point,
color = NA
)
args_outer <- list(
mapping = aes(scale = 0.9),
fill = NA
)
if (area_method == "equal height") {
args_inner$mapping <- modify_aes(args_inner$mapping, height = .data$scaled_density)
args_point$mapping <- modify_aes(args_point$mapping, height = .data$scaled_density)
args_outer$mapping <- modify_aes(args_outer$mapping, height = .data$scaled_density)
} else if (area_method == "scaled height") {
args_inner$mapping <- modify_aes(args_inner$mapping, height = .data$scaled_density * sqrt(.data$scaled_density))
args_point$mapping <- modify_aes(args_point$mapping, height = .data$scaled_density * sqrt(.data$scaled_density))
args_outer$mapping <- modify_aes(args_outer$mapping, height = .data$scaled_density * sqrt(.data$scaled_density))
} else {
args_inner$mapping <- modify_aes(args_inner$mapping, height = .data$plotting_density)
args_point$mapping <- modify_aes(args_point$mapping, height = .data$plotting_density)
args_outer$mapping <- modify_aes(args_outer$mapping, height = .data$plotting_density)
}
if (!is.null(border_size)) {
args_bottom$linewidth <- border_size
args_outer$linewidth <- border_size
args_inner$linewidth <- border_size
}
if (color_by_rhat) {
args_bottom$mapping <- args_bottom$mapping %>%
modify_aes(color = .data$rhat_rating)
args_inner$mapping <- args_inner$mapping %>%
modify_aes(color = .data$rhat_rating,
fill = .data$rhat_rating)
args_outer$mapping <- args_outer$mapping %>%
modify_aes(color = .data$rhat_rating)
# rhat fill color scale uses light/mid/dark colors. The point estimate needs
# to be drawn with highlighted color scale, so we manually set the color for
# the rhat fills.
dc <- diagnostic_colors("rhat", "color")[["values"]]
args_point$fill <- dc[datas$point$rhat_rating]
} else {
args_bottom$color <- get_color("dark")
args_inner$color <- get_color("dark")
args_inner$fill <- get_color("light")
args_point$fill <- get_color("mid_highlight")
args_outer$color <- get_color("dark")
}
# An invisible layer that is 2.5% taller than the plotted one
args_outer2 <- args_outer
args_outer2$mapping <- args_outer2$mapping %>%
modify_aes(scale = .925)
args_outer2$color <- NA
layer_bottom <- do.call(geom_segment, args_bottom)
layer_inner <- do.call(ggridges::geom_ridgeline, args_inner)
layer_outer <- do.call(ggridges::geom_ridgeline, args_outer)
layer_outer2 <- do.call(ggridges::geom_ridgeline, args_outer2)
point_geom <- if (no_point_est) {
geom_ignore
} else {
ggridges::geom_ridgeline
}
layer_point <- do.call(point_geom, args_point)
# Do something or add an invisible layer
if (color_by_rhat) {
scale_color <- scale_color_diagnostic("rhat")
scale_fill <- scale_fill_diagnostic("rhat")
} else {
scale_color <- geom_ignore()
scale_fill <- geom_ignore()
}
ggplot(datas$outer) +
aes(x = .data$x, y = .data$parameter) +
layer_vertical_line +
layer_inner +
layer_point +
layer_outer +
layer_outer2 +
layer_bottom +
scale_color +
scale_fill +
scale_y_discrete(
limits = unique(rev(data$parameter)),
expand = expansion(
add = c(0, 0.5 + 1/(2 * nlevels(data$parameter))),
mult = c(0.05, 1/(2 * nlevels(data$parameter)))
)
) +
xlim(x_lim) +
bayesplot_theme_get() +
legend_move(ifelse(color_by_rhat, "top", "none")) +
yaxis_text(face = "bold") +
yaxis_title(FALSE) +
yaxis_ticks(linewidth = 1) +
xaxis_title(FALSE)
}
#' @rdname MCMC-intervals
#' @export
mcmc_areas_ridges <- function(x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
prob_outer = 1,
prob = 1,
border_size = NULL,
bw = NULL, adjust = NULL, kernel = NULL,
n_dens = NULL) {
check_ignored_arguments(...)
data <- mcmc_areas_ridges_data(x, pars = pars, regex_pars = regex_pars,
transformations = transformations,
prob = prob, prob_outer = prob_outer,
bw = bw, adjust = adjust, kernel = kernel,
n_dens = n_dens)
datas <- data %>%
split(data$interval)
# faint vertical line at zero if zero is within x_lim
x_lim <- range(datas$outer$x)
x_range <- diff(x_lim)
x_lim[1] <- x_lim[1] - 0.05 * x_range
x_lim[2] <- x_lim[2] + 0.05 * x_range
layer_vertical_line <- if (0 > x_lim[1] && 0 < x_lim[2]) {
vline_0(color = "gray90", linewidth = 0.5)
} else {
geom_ignore()
}
args_outer <- list(
mapping = aes(height = .data$density),
color = get_color("dark"),
fill = NA,
stat = "identity"
)
if (!is.null(border_size)) {
args_outer$linewidth <- border_size
}
layer_outer <- do.call(ggridges::geom_density_ridges, args_outer)
# Force ggridges to compute the scaling now
test_plot <- ggplot(datas$outer) +
aes(x = .data$x, y = .data$parameter) +
layer_outer
soft_build <- ggplot_build(test_plot)
scaler1 <- unique(soft_build$data[[1]][["scale"]])
scaler2 <- unique(soft_build$data[[1]][["iscale"]])
scale <- scaler1 * scaler2
# Draw each ridgeline from top the bottom
layer_list_inner <- list()
par_draw_order <- levels(unique(data$parameter))
bg <- bayesplot_theme_get()[["panel.background"]][["fill"]] %||% "white"
for (par_num in seq_along(unique(data$parameter))) {
# Basically, draw the current ridgeline normally, but draw all the ones
# under it (which would overlap it vertically) with a blank fill
this_par <- par_draw_order[par_num]
next_pars <- par_draw_order[par_num < seq_along(par_draw_order)]
this_par_data <- datas$inner %>%
dplyr::filter(.data$parameter == this_par) %>%
mutate(color = get_color("dark"), fill = get_color("light"))
next_par_data <- datas$outer %>%
dplyr::filter(.data$parameter %in% next_pars) %>%
mutate(color = get_color("dark"), fill = bg)
args_inner <- list(
mapping = aes(height = .data$density, color = .data$color, fill = .data$fill),
data = dplyr::bind_rows(this_par_data, next_par_data),
scale = scale,
stat = "identity")
if (!is.null(border_size)) {
args_inner$linewidth <- border_size
}
layer_list_inner[[par_num]] <- do.call(ggridges::geom_ridgeline, args_inner)
}
ggplot(datas$outer) +
aes(x = .data$x, y = .data$parameter) +
layer_outer +
scale_y_discrete(limits = unique(rev(data$parameter)),
expand = expansion(
add = c(0, 1.4 + 1/(2 * nlevels(data$parameter))),
mult = c(0.05, 1/(2 * nlevels(data$parameter)))
)) +
layer_list_inner +
layer_vertical_line +
scale_fill_identity() +
scale_color_identity() +
xlim(x_lim) +
yaxis_title(FALSE) +
xaxis_title(FALSE) +
bayesplot_theme_get() +
grid_lines_y(color = "gray90") +
theme(axis.text.y = element_text(hjust = 1, vjust = 0))
}
#' @rdname MCMC-intervals
#' @export
mcmc_intervals_data <- function(x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
prob = 0.5,
prob_outer = 0.9,
point_est = c("median", "mean", "none"),
rhat = numeric()) {
check_ignored_arguments(...)
probs <- check_interval_widths(prob, prob_outer)
prob <- probs[1]
prob_outer <- probs[2]
x <- prepare_mcmc_array(x, pars, regex_pars, transformations)
x <- merge_chains(x)
data_long <- melt_mcmc(x) %>%
dplyr::as_tibble() %>%
rlang::set_names(tolower)
probs <- c(0.5 - prob_outer / 2,
0.5 - prob / 2,
0.5 + prob / 2,
0.5 + prob_outer / 2)
point_est <- match.arg(point_est)
m_func <- if (point_est == "mean") mean else median
data <- data_long %>%
group_by(.data$parameter) %>%
summarise(
outer_width = prob_outer,
inner_width = prob,
point_est = point_est,
ll = unname(quantile(.data$value, probs[1])),
l = unname(quantile(.data$value, probs[2])),
m = m_func(.data$value),
h = unname(quantile(.data$value, probs[3])),
hh = unname(quantile(.data$value, probs[4]))
)
if (point_est == "none") {
data$m <- NULL
}
color_by_rhat <- isTRUE(length(rhat) > 0)
if (color_by_rhat) {
rhat <- drop_NAs_and_warn(new_rhat(rhat))
if (length(rhat) != nrow(data)) {
abort(paste(
"'rhat' has length", length(rhat),
"but 'x' has", nrow(data), "parameters."
))
}
rhat <- set_names(rhat, data$parameter)
rhat_tbl <- rhat %>%
mcmc_rhat_data() %>%
select(one_of("parameter"),
rhat_value = "value",
rhat_rating = "rating",
rhat_description = "description") %>%
mutate(parameter = factor(.data$parameter, levels(data$parameter)))
data <- dplyr::inner_join(data, rhat_tbl, by = "parameter")
}
data
}
# Don't import `filter`: otherwise, you get a warning when using
# `devtools::load_all(".")` because stats also has a `filter` function
#' @importFrom dplyr inner_join one_of top_n
#' @rdname MCMC-intervals
#' @export
mcmc_areas_data <- function(x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
prob = 0.5,
prob_outer = 1,
point_est = c("median", "mean", "none"),
rhat = numeric(),
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL) {
probs <- check_interval_widths(prob, prob_outer)
# First compute normal intervals so we know the width of the data, point
# estimates, and have prepared rhat values.
# Compute intervals with a median (for now) if no point estimate. It will be
# cleaner to ignore results later than to have two branching code paths.
point_est <- match.arg(point_est)
temp_point_est <- if (point_est == "none") "median" else point_est
intervals <- mcmc_intervals_data(x, pars, regex_pars, transformations,
prob = probs[1], prob_outer = probs[2],
point_est = temp_point_est, rhat = rhat)
x <- prepare_mcmc_array(x, pars, regex_pars, transformations)
x <- merge_chains(x)
data_long <- melt_mcmc(x) %>%
dplyr::as_tibble() %>%
rlang::set_names(tolower)
# Compute the density intervals
data_inner <- data_long %>%
compute_column_density(
group_vars = "parameter",
value_var = "value",
interval_width = probs[1],
bw = bw,
adjust = adjust,
kernel = kernel,
n_dens = n_dens) %>%
mutate(interval = "inner")
data_outer <- data_long %>%
compute_column_density(
group_vars = "parameter",
value_var = "value",
interval_width = probs[2],
bw = bw,
adjust = adjust,
kernel = kernel,
n_dens = n_dens) %>%
mutate(interval = "outer")
# Point estimates will be intervals that take up .8% of the x-axis
x_lim <- range(data_outer$x)
x_range <- diff(x_lim)
x_lim[1] <- x_lim[1] - 0.05 * x_range
x_lim[2] <- x_lim[2] + 0.05 * x_range
half_point_width <- .004 * diff(x_lim)
# Find the density values closest to the point estimate
point_ests <- intervals %>%
select(one_of("parameter", "m"))
point_centers <- data_inner %>%
inner_join(point_ests, by = "parameter") %>%
group_by(.data$parameter) %>%
mutate(diff = abs(.data$m - .data$x)) %>%
dplyr::top_n(1, -.data$diff) %>%
select(one_of("parameter", "x", "m")) %>%
rename(center = "x") %>%
ungroup()
# Keep density values that are within +/- .4% of x-axis of the point estimate
points <- point_centers %>%
left_join(data_inner, by = "parameter") %>%
group_by(.data$parameter) %>%
dplyr::filter(abs(.data$center - .data$x) <= half_point_width) %>%
mutate(
interval_width = 0,
interval = "point"
) %>%
select(-c("center"), "m") %>%
ungroup()
# Ignore points calculcation if no point estimate was requested
if (point_est == "none") {
points <- dplyr::filter(points, FALSE)
}
data <- dplyr::bind_rows(data_inner, data_outer, points) %>%
select(one_of("parameter", "interval", "interval_width",
"x", "density", "scaled_density")) %>%
# Density scaled so the highest in entire dataframe has height 1
mutate(plotting_density = .data$density / max(.data$density))
if (rlang::has_name(intervals, "rhat_value")) {
rhat_info <- intervals %>%
select(one_of("parameter", "rhat_value",
"rhat_rating", "rhat_description"))
data <- inner_join(data, rhat_info, by = "parameter")
}
data
}
#' @rdname MCMC-intervals
#' @export
mcmc_areas_ridges_data <- function(x,
pars = character(),
regex_pars = character(),
transformations = list(),
...,
prob_outer = 1,
prob = 1,
bw = NULL,
adjust = NULL, kernel = NULL,
n_dens = NULL) {
check_ignored_arguments(...)
mcmc_areas_data(x, pars = pars, regex_pars = regex_pars,
transformations = transformations,
prob = prob, prob_outer = prob_outer, point_est = "none",
bw = bw, adjust = adjust, kernel = kernel, n_dens = n_dens)
}
# internal ----------------------------------------------------------------
#' Compute density for a dataframe column.
#'
#' @param df a dataframe of posterior samples
#' @param group_vars columns to group by. e.g., `c(Parameter, Chain)`
#' @param value_var column containing posterior samples
#' @param ... arguments passed onto density calculation
#' @noRd
compute_column_density <- function(df, group_vars, value_var, ...) {
value_var <- enquo(value_var)
group_vars <- enquos(group_vars)
# Convert the vector of bare column names to a list of symbols
group_cols <- df %>%
dplyr::select(!!! group_vars) %>%
names() %>%
syms()
# Tuck away the subgroups to compute densities on into nested dataframes
sub_df <- dplyr::select(df, !!! group_cols, !! value_var)
group_df <- df %>%
dplyr::select(!!! group_cols, !! value_var) %>%
group_by(!!! group_cols)
by_group <- group_df %>%
split(dplyr::group_indices(group_df)) %>%
lapply(pull, !! value_var)
nested <- df %>%
dplyr::distinct(!!! group_cols) %>%
mutate(data = by_group)
nested$density <- lapply(nested$data, compute_interval_density, ...)
nested$data <- NULL
# Manually unnest the data
reconstructed <- as.list(seq_len(nrow(nested)))
for (df_i in seq_along(nested$density)) {
row <- nested[df_i, ]
parent <- row %>% select(-c("density"))
groups <- rep(list(parent), nrow(row$density[[1]])) %>% dplyr::bind_rows()
reconstructed[[df_i]] <- dplyr::bind_cols(groups, row$density[[1]])
}
dplyr::bind_rows(reconstructed)
}
# Given a vector of values, compute a density dataframe.
compute_interval_density <- function(x, interval_width = 1, n_dens = 1024,
bw = NULL, adjust = NULL, kernel = NULL) {
n_dens <- n_dens %||% 1024
tail_width <- (1 - interval_width) / 2
qs <- quantile(x, probs = c(tail_width, 1 - tail_width))
args <- c(
# can't be null
list(x = x, from = min(qs), to = max(qs), n = n_dens),
# might be null
bw = bw, adjust = adjust, kernel = kernel)
dens <- do.call(stats::density, args)
data.frame(
interval_width = interval_width,
x = dens$x,
density = dens$y,
scaled_density = dens$y / max(dens$y, na.rm = TRUE)
)
}
check_interval_widths <- function(prob, prob_outer) {
if (!(is.numeric(prob) && is.numeric(prob_outer)))
abort("`prob` and `prob_outer` must be numeric")
if (prob < 0 || prob > 1 || prob_outer < 0 || prob_outer > 1)
abort("`prob` and `prob_outer` must be in [0,1].")
if (prob_outer < prob) {
x <- sprintf(
"`prob_outer` (%s) is less than `prob` (%s)\n... %s",
prob_outer,
prob,
"Swapping the values of `prob_outer` and `prob`"
)
warn(x)
}
sort(c(prob, prob_outer))
}
|