1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
#' Compare MCMC estimates to "true" parameter values
#'
#' Plots comparing MCMC estimates to "true" parameter values. Before fitting a
#' model to real data it is useful to simulate data according to the model using
#' known (fixed) parameter values and to check that these "true" parameter
#' values are (approximately) recovered by fitting the model to the simulated
#' data. See the **Plot Descriptions** section, below, for details on the
#' available plots.
#'
#' @name MCMC-recover
#' @family MCMC
#'
#' @template args-mcmc-x
#' @template args-facet_args
#' @param true A numeric vector of "true" values of the parameters in `x`.
#' There should be one value in `true` for each parameter included in
#' `x` and the order of the parameters in `true` should be the same
#' as the order of the parameters in `x`.
#' @param batch Optionally, a vector-like object (numeric, character, integer,
#' factor) used to split the parameters into batches. If `batch` is
#' specified, it must have the same length as `true` and be in the same
#' order as `true`. Parameters in the same batch will be grouped together
#' in the same facet in the plot (see the **Examples** section, below).
#' The default is to group all parameters together into a single batch.
#' Changing the default is most useful when parameters are on very different
#' scales, in which case `batch` can be used to group them into batches
#' within which it makes sense to use the same y-axis.
#' @param ... Currently unused.
#' @param prob The probability mass to include in the inner interval. The
#' default is `0.5` (50% interval).
#' @param prob_outer The probability mass to include in the outer interval. The
#' default is `0.9` (90% interval).
#' @param point_est The point estimate to show. Either `"median"` (the
#' default), `"mean"`, or `"none"`.
#' @param size,alpha Passed to [ggplot2::geom_point()] to control the
#' appearance of plotted points.
#'
#' @template return-ggplot
#'
#' @section Plot Descriptions:
#' \describe{
#' \item{`mcmc_recover_intervals()`}{
#' Central intervals and point estimates computed from MCMC draws, with
#' "true" values plotted using a different shape.
#' }
#' \item{`mcmc_recover_scatter()`}{
#' Scatterplot of posterior means (or medians) against "true" values.
#' }
#' \item{`mcmc_recover_hist()`}{
#' Histograms of the draws for each parameter with the "true" value overlaid
#' as a vertical line.
#' }
#' }
#'
#' @examples
#' \dontrun{
#' library(rstanarm)
#' alpha <- 1; beta <- rnorm(10, 0, 3); sigma <- 2
#' X <- matrix(rnorm(1000), 100, 10)
#' y <- rnorm(100, mean = c(alpha + X %*% beta), sd = sigma)
#' fit <- stan_glm(y ~ ., data = data.frame(y, X), refresh = 0)
#' draws <- as.matrix(fit)
#' print(colnames(draws))
#' true <- c(alpha, beta, sigma)
#'
#' mcmc_recover_intervals(draws, true)
#'
#' # put the coefficients on X into the same batch
#' mcmc_recover_intervals(draws, true, batch = c(1, rep(2, 10), 1))
#' # equivalent
#' mcmc_recover_intervals(draws, true, batch = grepl("X", colnames(draws)))
#' # same but facets stacked vertically
#' mcmc_recover_intervals(draws, true,
#' batch = grepl("X", colnames(draws)),
#' facet_args = list(ncol = 1),
#' size = 3)
#'
#' # each parameter in its own facet
#' mcmc_recover_intervals(draws, true, batch = 1:ncol(draws))
#' # same but in a different order
#' mcmc_recover_intervals(draws, true, batch = c(1, 3, 4, 2, 5:12))
#' # present as bias by centering with true values
#' mcmc_recover_intervals(sweep(draws, 2, true), rep(0, ncol(draws))) + hline_0()
#'
#'
#' # scatterplot of posterior means vs true values
#' mcmc_recover_scatter(draws, true, point_est = "mean")
#'
#'
#' # histograms of parameter draws with true value added as vertical line
#' color_scheme_set("brightblue")
#' mcmc_recover_hist(draws[, 1:4], true[1:4])
#' }
#'
NULL
#' @rdname MCMC-recover
#' @export
mcmc_recover_intervals <-
function(x,
true,
batch = rep(1, length(true)),
...,
facet_args = list(),
prob = 0.5,
prob_outer = 0.9,
point_est = c("median", "mean", "none"),
size = 4,
alpha = 1) {
check_ignored_arguments(...)
x <- merge_chains(prepare_mcmc_array(x))
stopifnot(
is.numeric(true),
ncol(x) == length(true),
length(batch) == length(true),
prob_outer >= prob,
prob > 0,
prob_outer <= 1
)
all_separate <- length(unique(batch)) == length(true)
point_est <- match.arg(point_est)
if (point_est == "none") {
point_est <- NULL
}
alpha1 <- (1 - prob) / 2
alpha2 <- (1 - prob_outer) / 2
probs <- sort(c(alpha1, 1 - alpha1, alpha2, 1 - alpha2))
intervals <- t(apply(x, 2, quantile, probs = probs))
colnames(intervals) <- c("ll", "l", "u", "uu")
plot_data <- data.frame(
Parameter = rownames(intervals),
True = true,
Point = apply(x, 2, point_est %||% function(x) NA),
intervals
)
if (!all_separate) {
plot_data$Batch <- factor(batch, levels = unique(batch))
} else {
plot_data$Batch <-
factor(rownames(intervals),
levels = rownames(intervals)[as.integer(as.factor(batch))])
}
facet_args[["facets"]] <- "Batch"
facet_args[["strip.position"]] <- facet_args[["strip.position"]] %||% "top"
facet_args[["scales"]] <- facet_args[["scales"]] %||% "free"
plot_caption <- paste0("Showing ", round(prob * 100, 1), "% and ",
round(prob_outer * 100, 1), "% intervals")
graph <- ggplot(plot_data, aes(x = .data$Parameter, xend = .data$Parameter)) +
geom_segment(
aes(y = .data$ll, yend = .data$uu, color = "Estimated"),
lineend = "round",
show.legend = FALSE
) +
geom_segment(
aes(y = .data$l, yend = .data$u, color = "Estimated"),
linewidth = 2,
lineend = "round",
show.legend = FALSE
) +
bayesplot_theme_get()
if (!is.null(point_est)) {
graph <- graph +
geom_point(
aes(y = .data$Point, shape = "Estimated",
color = "Estimated", fill = "Estimated"),
size = size
)
}
graph <- graph +
geom_point(
aes(y = .data$True, shape = "True",
color = "True", fill = "True"),
size = size,
alpha = alpha
) +
scale_color_manual(
name = "",
values = c(Estimated = get_color("d"), True = get_color("dh")),
guide = if (is.null(point_est)) "none" else "legend"
) +
scale_fill_manual(
name = "",
values = c(Estimated = get_color("d"), True = get_color("l"))
) +
scale_shape_manual(
name = "",
values = c(Estimated = 21, True = 24)
) +
do.call("facet_wrap", facet_args) +
labs(y = "Value", x = "Parameter", subtitle = plot_caption) +
theme(plot.caption = element_text(hjust = 0)) +
xaxis_title(FALSE) +
yaxis_title(FALSE)
if (all_separate) {
return(
graph +
theme(axis.line.x = element_blank()) +
xaxis_ticks(FALSE) +
xaxis_text(FALSE)
)
}
graph +
xaxis_text(face = "bold") +
facet_text(FALSE)
}
#' @rdname MCMC-recover
#' @export
mcmc_recover_scatter <-
function(x,
true,
batch = rep(1, length(true)),
...,
facet_args = list(),
point_est = c("median", "mean"),
size = 3,
alpha = 1) {
check_ignored_arguments(...)
x <- merge_chains(prepare_mcmc_array(x))
stopifnot(
is.numeric(true),
ncol(x) == length(true),
length(batch) == length(true)
)
one_true_per_batch <- length(unique(batch)) == length(true)
one_batch <- length(unique(batch)) == 1
point_est <- match.arg(point_est)
plot_data <- data.frame(
Parameter = colnames(x),
Point = apply(x, 2, point_est),
True = true
)
if (!one_true_per_batch) {
plot_data$Batch <- factor(batch, levels = unique(batch))
} else {
plot_data$Batch <-
factor(colnames(x), levels = colnames(x)[as.integer(as.factor(batch))])
}
facet_args[["facets"]] <- "Batch"
facet_args[["strip.position"]] <- facet_args[["strip.position"]] %||% "top"
facet_args[["scales"]] <- facet_args[["scales"]] %||% "free"
# To ensure that the x and y scales have the same range, find the min and max
# value on each coordinate. plot them invisibly with geom_blank() later on.
corners <- plot_data %>%
group_by(.data$Batch) %>%
summarise(
min = min(pmin(.data$Point, .data$True)),
max = max(pmax(.data$Point, .data$True))
)
graph <-
ggplot(plot_data, aes(x = .data$True, y = .data$Point)) +
geom_abline(
slope = 1,
intercept = 0,
linetype = 2,
color = "black"
) +
geom_point(
shape = 21,
color = get_color("mh"),
fill = get_color("m"),
size = size,
alpha = alpha
) +
geom_blank(aes(x = min, y = min), data = corners) +
geom_blank(aes(x = max, y = max), data = corners) +
do.call("facet_wrap", facet_args) +
labs(x = "True", y = "Estimated") +
bayesplot_theme_get()
if (one_batch) {
graph <- graph + facet_text(FALSE)
}
graph
}
#' @rdname MCMC-recover
#' @export
#' @template args-hist
mcmc_recover_hist <-
function(x,
true,
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
breaks = NULL) {
check_ignored_arguments(...)
x <- merge_chains(prepare_mcmc_array(x))
stopifnot(
is.numeric(true),
ncol(x) == length(true)
)
vline_data <- data.frame(Parameter = colnames(x), True = true)
hist_data <- melt_mcmc(x)[, -1]
vline_data$Parameter <- factor(vline_data$Parameter, levels = levels(hist_data$Parameter))
facet_args[["facets"]] <- "Parameter"
facet_args[["scales"]] <- facet_args[["scales"]] %||% "free"
ggplot() +
geom_histogram(
aes(x = .data$Value, fill = "Estimated"),
data = hist_data,
color = get_color("lh"),
linewidth = 0.25,
binwidth = binwidth,
bins = bins,
breaks = breaks
) +
geom_vline(
aes(xintercept = .data$True, color = "True"),
data = vline_data,
linewidth = 1.5
) +
do.call("facet_wrap", facet_args) +
scale_fill_manual("", values = get_color("l")) +
scale_color_manual("", values = get_color("dh")) +
guides(color = guide_legend(), fill = guide_legend(order = 1)) +
dont_expand_y_axis() +
bayesplot_theme_get() +
reduce_legend_spacing(0.25) +
xaxis_title(FALSE) +
yaxis_text(FALSE) +
yaxis_ticks(FALSE) +
yaxis_title(FALSE)
}
|