1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
#' PPC censoring
#'
#' @description Compare the empirical distribution of censored data `y` to the
#' distributions of simulated/replicated data `yrep` from the posterior
#' predictive distribution. See the **Plot Descriptions** section, below, for
#' details.
#'
#' Although some of the other \pkg{bayesplot} plots can be used with censored
#' data, `ppc_km_overlay()` is currently the only plotting function designed
#' *specifically* for censored data. We encourage you to suggest or contribute
#' additional plots at
#' [github.com/stan-dev/bayesplot](https://github.com/stan-dev/bayesplot).
#'
#' @name PPC-censoring
#' @family PPCs
#'
#' @template args-y-yrep
#' @param size,alpha Passed to the appropriate geom to control the appearance of
#' the `yrep` distributions.
#' @param ... Currently only used internally.
#'
#' @template return-ggplot
#'
#' @section Plot Descriptions:
#' \describe{
#' \item{`ppc_km_overlay()`}{
#' Empirical CCDF estimates of each dataset (row) in `yrep` are overlaid, with
#' the Kaplan-Meier estimate (Kaplan and Meier, 1958) for `y` itself on top
#' (and in a darker shade). This is a PPC suitable for right-censored `y`.
#' Note that the replicated data from `yrep` is assumed to be uncensored. Left
#' truncation (delayed entry) times for `y` can be specified using
#' `left_truncation_y`.
#' }
#' \item{`ppc_km_overlay_grouped()`}{
#' The same as `ppc_km_overlay()`, but with separate facets by `group`.
#' }
#' }
#'
#' @templateVar bdaRef (Ch. 6)
#' @template reference-bda
#' @template reference-km
#'
#' @examples
#' \donttest{
#' color_scheme_set("brightblue")
#'
#' # For illustrative purposes, (right-)censor values y > 110:
#' y <- example_y_data()
#' status_y <- as.numeric(y <= 110)
#' y <- pmin(y, 110)
#'
#' # In reality, the replicated data (yrep) would be obtained from a
#' # model which takes the censoring of y properly into account. Here,
#' # for illustrative purposes, we simply use example_yrep_draws():
#' yrep <- example_yrep_draws()
#' dim(yrep)
#'
#' # Overlay 25 curves
#' ppc_km_overlay(y, yrep[1:25, ], status_y = status_y)
#'
#' # With extrapolation_factor = 1 (no extrapolation)
#' ppc_km_overlay(y, yrep[1:25, ], status_y = status_y, extrapolation_factor = 1)
#'
#' # With extrapolation_factor = Inf (show all posterior predictive draws)
#' ppc_km_overlay(y, yrep[1:25, ], status_y = status_y, extrapolation_factor = Inf)
#'
#' # With separate facets by group:
#' group <- example_group_data()
#' ppc_km_overlay_grouped(y, yrep[1:25, ], group = group, status_y = status_y)
#'
#' # With left-truncation (delayed entry) times:
#' min_vals <- pmin(y, apply(yrep, 2, min))
#' left_truncation_y <- rep(0, length(y))
#' condition <- y > mean(y) / 2
#' left_truncation_y[condition] <- pmin(
#' runif(sum(condition), min = 0.6, max = 0.99) * y[condition],
#' min_vals[condition] - 0.001
#' )
#' ppc_km_overlay(y, yrep[1:25, ], status_y = status_y,
#' left_truncation_y = left_truncation_y)
#' }
NULL
#' @export
#' @rdname PPC-censoring
#' @param status_y The status indicator for the observations from `y`. This must
#' be a numeric vector of the same length as `y` with values in \{0, 1\} (0 =
#' right censored, 1 = event).
#' @param left_truncation_y Optional parameter that specifies left-truncation
#' (delayed entry) times for the observations from `y`. This must be a numeric
#' vector of the same length as `y`. If `NULL` (default), no left-truncation
#' is assumed.
#' @param extrapolation_factor A numeric value (>=1) that controls how far the
#' plot is extended beyond the largest observed value in `y`. The default
#' value is 1.2, which corresponds to 20 % extrapolation. Note that all
#' posterior predictive draws may not be shown by default because of the
#' controlled extrapolation. To display all posterior predictive draws, set
#' `extrapolation_factor = Inf`.
#'
ppc_km_overlay <- function(
y,
yrep,
...,
status_y,
left_truncation_y = NULL,
extrapolation_factor = 1.2,
size = 0.25,
alpha = 0.7
) {
check_ignored_arguments(..., ok_args = "add_group")
add_group <- list(...)$add_group
suggested_package("survival")
suggested_package("ggfortify")
if (!is.numeric(status_y) || length(status_y) != length(y) || !all(status_y %in% c(0, 1))) {
stop("`status_y` must be a numeric vector of 0s and 1s the same length as `y`.", call. = FALSE)
}
if (!is.null(left_truncation_y)) {
if (!is.numeric(left_truncation_y) || length(left_truncation_y) != length(y)) {
stop("`left_truncation_y` must be a numeric vector of the same length as `y`.", call. = FALSE)
}
}
if (extrapolation_factor < 1) {
stop("`extrapolation_factor` must be greater than or equal to 1.", call. = FALSE)
}
if (extrapolation_factor == 1.2) {
message(
"Note: `extrapolation_factor` now defaults to 1.2 (20%).\n",
"To display all posterior predictive draws, set `extrapolation_factor = Inf`."
)
}
data <- ppc_data(y, yrep, group = status_y)
# Modify the status indicator:
# * For the observed data ("y"), convert the status indicator back to
# a numeric.
# * For the replicated data ("yrep"), set the status indicator
# to 1 ("event"). This way, the Kaplan-Meier estimator reduces
# to "1 - ECDF" with ECDF denoting the ordinary empirical cumulative
# distribution function.
data <- data %>%
dplyr::mutate(group = ifelse(.data$is_y,
as.numeric(as.character(.data$group)),
1))
if (is.null(left_truncation_y)) {
sf_form <- survival::Surv(time = data$value, event = data$group) ~ rep_label
} else {
sf_form <- survival::Surv(time = left_truncation_y[data$y_id], time2 = data$value, event = data$group) ~ rep_label
}
if (!is.null(add_group)) {
data <- dplyr::inner_join(data,
tibble::tibble(y_id = seq_along(y),
add_group = add_group),
by = "y_id")
sf_form <- update(sf_form, . ~ . + add_group)
}
sf <- survival::survfit(
sf_form,
data = data
)
names(sf$strata) <- sub("add_group=", "add_group:", names(sf$strata)) # Needed to split the strata names in ggfortify:::fortify.survfit() properly.
fsf <- fortify(sf)
if(any(grepl("add_group", levels(fsf$strata)))){
strata_split <- strsplit(as.character(fsf$strata), split = ", add_group:")
fsf$strata <- as.factor(sapply(strata_split, "[[", 1))
fsf$group <- as.factor(sapply(strata_split, "[[", 2))
}
fsf$is_y_color <- as.factor(sub("\\[rep\\] \\(.*$", "rep", sub("^italic\\(y\\)", "y", fsf$strata)))
fsf$is_y_size <- ifelse(fsf$is_y_color == "yrep", size, 1)
fsf$is_y_alpha <- ifelse(fsf$is_y_color == "yrep", alpha, 1)
max_time_y <- max(y, na.rm = TRUE)
fsf <- fsf %>%
dplyr::filter(.data$is_y_color != "yrep" | .data$time <= max_time_y * extrapolation_factor)
# Ensure that the observed data gets plotted last by reordering the
# levels of the factor "strata"
fsf$strata <- factor(fsf$strata, levels = rev(levels(fsf$strata)))
ggplot(data = fsf,
mapping = aes(x = .data$time,
y = .data$surv,
color = .data$is_y_color,
group = .data$strata,
size = .data$is_y_size,
alpha = .data$is_y_alpha)) +
geom_step() +
hline_at(
0.5,
linewidth = 0.1,
linetype = 2,
color = get_color("dh")
) +
hline_at(
c(0, 1),
linewidth = 0.2,
linetype = 2,
color = get_color("dh")
) +
scale_size_identity() +
scale_alpha_identity() +
scale_color_ppc() +
scale_y_continuous(breaks = c(0, 0.5, 1)) +
xlab(y_label()) +
yaxis_title(FALSE) +
xaxis_title(FALSE) +
yaxis_ticks(FALSE) +
bayesplot_theme_get()
}
#' @export
#' @rdname PPC-censoring
#' @template args-group
ppc_km_overlay_grouped <- function(
y,
yrep,
group,
...,
status_y,
left_truncation_y = NULL,
extrapolation_factor = 1.2,
size = 0.25,
alpha = 0.7
) {
check_ignored_arguments(...)
p_overlay <- ppc_km_overlay(
y = y,
yrep = yrep,
add_group = group,
...,
status_y = status_y,
left_truncation_y = left_truncation_y,
size = size,
alpha = alpha,
extrapolation_factor = extrapolation_factor
)
p_overlay +
facet_wrap("group") +
force_axes_in_facets()
}
|