File: ppc-discrete.R

package info (click to toggle)
r-cran-bayesplot 1.14.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,288 kB
  • sloc: sh: 13; makefile: 2
file content (567 lines) | stat: -rw-r--r-- 17,780 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#' PPCs for discrete outcomes
#'
#' Many of the [PPC][PPC-overview] functions in **bayesplot** can
#' be used with discrete data. The small subset of these functions that can
#' *only* be used if `y` and `yrep` are discrete are documented
#' on this page. Currently these include rootograms for count outcomes and bar
#' plots for ordinal, categorical, and multinomial outcomes. See the
#' **Plot Descriptions** section below.
#'
#' @name PPC-discrete
#' @family PPCs
#'
#' @template args-y-yrep
#' @param ... Currently unused.
#' @param prob A value between `0` and `1` indicating the desired probability
#'   mass to include in the `yrep` intervals. Set `prob=0` to remove the
#'   intervals. (Note: for rootograms these are intervals of the *square roots*
#'   of the expected counts.)
#' @param width For bar plots only, passed to [ggplot2::geom_bar()] to control
#'   the bar width.
#' @param size,fatten,linewidth For bar plots, `size`, `fatten`, and `linewidth`
#'   are passed to [ggplot2::geom_pointrange()] to control the appearance of the
#'   `yrep` points and intervals. For rootograms `size` is passed to
#'   [ggplot2::geom_line()] and [ggplot2::geom_pointrange()].
#' @param freq For bar plots only, if `TRUE` (the default) the y-axis will
#'   display counts. Setting `freq=FALSE` will put proportions on the y-axis.
#' @param bound_distinct For `ppc_rootogram(style = "discrete)`,
#'  if `TRUE` then the observed counts will be plotted with different shapes
#'  depending on whether they are within the bounds of the `y` quantiles.
#'
#' @template return-ggplot-or-data
#'
#' @details For all of these plots `y` and `yrep` must be integers, although
#'   they need not be integers in the strict sense of \R's
#'   [integer][base::integer] type. For rootogram plots `y` and `yrep` must also
#'   be non-negative.
#'
#' @section Plot Descriptions:
#' \describe{
#' \item{`ppc_bars()`}{
#'   Bar plot of `y` with `yrep` medians and uncertainty intervals
#'   superimposed on the bars.
#' }
#' \item{`ppc_bars_grouped()`}{
#'   Same as `ppc_bars()` but a separate plot (facet) is generated for each
#'   level of a grouping variable.
#' }
#' \item{`ppc_rootogram()`}{
#'   Rootograms allow for diagnosing problems in count data models such as
#'   overdispersion or excess zeros. In `standing`, `hanging`, and `suspended`
#'   styles, they consist of a histogram of `y` with the expected counts based on
#'   `yrep` overlaid as a line along with uncertainty intervals.
#'
#'   Meanwhile, in `discrete` style, median counts based on `yrep` are laid
#'   as a point range with uncertainty intervals along with dots
#'   representing the `y`.
#'
#'   The y-axis represents the square roots of the counts to approximately
#'   adjust for scale differences and thus ease comparison between observed
#'   and expected counts. Using the `style` argument, the rootogram can be
#'   adjusted to focus on different aspects of the data:
#'   * _Standing_: basic histogram of observed counts with curve
#'    showing expected counts.
#'   * _Hanging_: observed counts hanging from the curve
#'    representing expected counts.
#'   * _Suspended_: histogram of the differences between expected and
#'    observed counts.
#'    * _Discrete_: a dot-and-whisker plot of the median counts and
#'    dots representing observed counts.
#'
#'    As it emphasizes the discrete nature of the count data,
#'    using `discrete` style is suggested.
#'
#'   **All of the rootograms are plotted on the square root scale**. See Kleiber
#'   and Zeileis (2016) for advice on interpreting rootograms and selecting
#'   among the different styles.
#' }
#' }
#'
#' @section Related functions:
#' In addition to the functions on this page that are restricted to discrete
#' outcomes, some general PPC/PPD functions also support discrete data
#' when requested:
#' - [ppc_stat()] and [ppc_stat_grouped()] can visualize discrete test statistics
#'    with predictive checks when `discrete = TRUE`.
#' - [ppd_stat()] and [ppd_stat_grouped()] can visualize discrete test statistics
#'    from predictive draws when `discrete = TRUE`.
#' - [ppc_ecdf_overlay] can visualize empirical CDFs for discrete statistics
#'    with `discrete = TRUE`.
#' - [ppc_pit_ecdf()] and [ppc_pit_ecdf_grouped()] can also handle discrete
#'   variables to plot PIT-ECDF of the empirical PIT values.
#'
#' These functions are not limited to discrete outcomes, but offer discrete-friendly
#' displays for integer-valued statistics.
#'
#' @examples
#' set.seed(9222017)
#'
#' # bar plots
#' f <- function(N) {
#'   sample(1:4, size = N, replace = TRUE, prob = c(0.25, 0.4, 0.1, 0.25))
#' }
#' y <- f(100)
#' yrep <- t(replicate(500, f(100)))
#' dim(yrep)
#' group <- gl(2, 50, length = 100, labels = c("GroupA", "GroupB"))
#'
#' color_scheme_set("mix-pink-blue")
#' ppc_bars(y, yrep)
#'
#' # split by group, change interval width, and display proportion
#' # instead of count on y-axis
#' color_scheme_set("mix-blue-pink")
#' ppc_bars_grouped(y, yrep, group, prob = 0.5, freq = FALSE)
#'
#' \dontrun{
#' # example for ordinal regression using rstanarm
#' library(rstanarm)
#' fit <- stan_polr(
#'   tobgp ~ agegp,
#'   data = esoph,
#'   method = "probit",
#'   prior = R2(0.2, "mean"),
#'   init_r = 0.1,
#'   seed = 12345,
#'   # cores = 4,
#'   refresh = 0
#'  )
#'
#' # coded as character, so convert to integer
#' yrep_char <- posterior_predict(fit)
#' print(yrep_char[1, 1:4])
#'
#' yrep_int <- sapply(data.frame(yrep_char, stringsAsFactors = TRUE), as.integer)
#' y_int <- as.integer(esoph$tobgp)
#'
#' ppc_bars(y_int, yrep_int)
#'
#' ppc_bars_grouped(
#'   y = y_int,
#'   yrep = yrep_int,
#'   group = esoph$agegp,
#'   freq=FALSE,
#'   prob = 0.5,
#'   fatten = 1,
#'   size = 1.5
#' )
#' }
#'
NULL

#' @rdname PPC-discrete
#' @export
ppc_bars <-
  function(y,
           yrep,
           ...,
           prob = 0.9,
           width = 0.9,
           size = 1,
           fatten = 2.5,
           linewidth = 1,
           freq = TRUE) {

    dots <- list(...)
    if (!from_grouped(dots)) {
      check_ignored_arguments(...)
      dots$group <- NULL
    }

    data <- ppc_bars_data(
      y = y,
      yrep = yrep,
      group = dots$group,
      prob = prob,
      freq = freq
    )

    if (!is.null(dots$group)) {
      limits <- geom_ignore()
    } else {
      limits <- expand_limits(y = 1.05 * max(data[["h"]], na.rm = TRUE))
    }

    ggplot(data) +
      geom_col(
        data = dplyr::filter(data, !is.na(.data$y_obs)),
        mapping = aes(x = .data$x, y = .data$y_obs, fill = "y"),
        color = get_color("lh"),
        width = width
      ) +
      geom_pointrange(
        mapping = intervals_inner_aes(needs_y = TRUE, color = "yrep"),
        size = size,
        fatten = fatten,
        linewidth = linewidth,
        na.rm = TRUE
      ) +
      scale_color_ppc(
        values = get_color("d"),
        labels = yrep_label(),
        guide = guide_legend(order = 1, override.aes = list(size = .75 * size))
      ) +
      scale_fill_ppc(values = get_color("l"), labels = y_label()) +
      scale_x_continuous(breaks = pretty) +
      labs(x = NULL, y = if (freq) "Count" else "Proportion") +
      dont_expand_y_axis() +
      bayesplot_theme_get() +
      limits +
      reduce_legend_spacing(0.25)
  }


#' @rdname PPC-discrete
#' @export
#' @template args-group
#' @param facet_args An optional list of  arguments (other than `facets`)
#'   passed to [ggplot2::facet_wrap()] to control faceting.
ppc_bars_grouped <-
  function(y,
           yrep,
           group,
           ...,
           facet_args = list(),
           prob = 0.9,
           width = 0.9,
           size = 1,
           fatten = 2.5,
           linewidth = 1,
           freq = TRUE) {
    check_ignored_arguments(...)
    call <- match.call(expand.dots = FALSE)
    g <- eval(ungroup_call("ppc_bars", call), parent.frame())
    if (fixed_y(facet_args)) {
      g <- g + expand_limits(y = 1.05 * max(g$data[["h"]], na.rm = TRUE))
    }
    g +
      bars_group_facets(facet_args) +
      force_axes_in_facets()
  }


#' @rdname PPC-discrete
#' @export
#' @param style For `ppc_rootogram`, a string specifying the rootogram
#'   style. The options are `"discrete"`, `"standing"`, `"hanging"`, and
#'   `"suspended"`. See the **Plot Descriptions** section, below, for
#'   details on the different styles.
#'
#' @references
#' Kleiber, C. and Zeileis, A. (2016).
#' Visualizing count data regressions using rootograms.
#' *The American Statistician*. 70(3): 296--303.
#' <https://arxiv.org/abs/1605.01311>.
#'
#' @examples
#' # rootograms for counts
#' y <- rpois(100, 20)
#' yrep <- matrix(rpois(10000, 20), ncol = 100)
#'
#' color_scheme_set("brightblue")
#' ppc_rootogram(y, yrep)
#' ppc_rootogram(y, yrep, prob = 0)
#'
#' ppc_rootogram(y, yrep, style = "hanging", prob = 0.8)
#' ppc_rootogram(y, yrep, style = "suspended")
#' ppc_rootogram(y, yrep, style = "discrete")
#'
ppc_rootogram <- function(y,
                          yrep,
                          style = c("standing", "hanging", "suspended", "discrete"),
                          ...,
                          prob = 0.9,
                          size = 1,
                          bound_distinct = TRUE) {
  check_ignored_arguments(...)
  style <- match.arg(style)

  data <- .ppc_rootogram_data(
    y = y,
    yrep = yrep,
    style = style,
    prob = prob,
    bound_distinct = bound_distinct
  )

  # Building geoms for y and y_rep
  geom_y <- if (style == "discrete") {
    geom_point(
      aes(y = .data$obs, shape = .data$obs_shape),
      size = size * 1.5,
      color = get_color("d"),
      fill = get_color("d"))
  } else {
    geom_tile(
      aes(
        x = .data$xpos,
        y = .data$ypos,
        fill = "Observed"
      ),
      color = get_color("lh"),
      linewidth = 0.25,
      width = 1
    )
  }

  geom_yrep <- if (style == "discrete") {
    geom_pointrange(
      aes(y = .data$pred_median, ymin = .data$lower, ymax = .data$upper, color = "y_rep"),
      fill = get_color("lh"),
      linewidth = size,
      size = size,
      fatten = 2,
      alpha = 1
    )
  } else {
    geom_smooth(
      aes(x = .data$xpos, y = .data$tyexp, color = "Expected"),
      fill = get_color("d"),
      linewidth = size,
      stat = "identity"
    )
  }

  # Creating the graph
  graph <- ggplot(data)

  if (style == "discrete") {
    graph <- graph +
      geom_yrep +
      geom_y +
      aes(x = .data$xpos) +
      scale_y_sqrt() +
      scale_fill_manual("", values = get_color("d"), guide = "none") +
      scale_color_manual("", values = get_color("lh"), labels = yrep_label()) +
      labs(x = expression(italic(y)), y = "Count") +
      bayesplot_theme_get() +
      reduce_legend_spacing(0.25) +
      scale_shape_manual(values = c("In" = 22, "Out" = 23, "y" = 22), guide = "legend", labels = c("y" = expression(italic(y))))
    if (bound_distinct) {
      graph <- graph + guides(shape = guide_legend(expression(italic(y)~within~bounds)))
    } else {
      graph <- graph + guides(shape = guide_legend(" "))
    }
  } else {
    graph <- graph +
      geom_y +
      geom_yrep +
      aes(
        ymin = .data$tylower,
        ymax = .data$tyupper,
        height = .data$ty
      ) +
      scale_fill_manual("", values = get_color("l")) +
      scale_color_manual("", values = get_color("dh")) +
      labs(x = expression(italic(y)), y = expression(sqrt(Count))) +
      bayesplot_theme_get() +
      reduce_legend_spacing(0.25)
    if (style == "standing") {
      graph <- graph + dont_expand_y_axis()
    } else {
      graph <- graph + hline_0(size = 0.4)
    }
  }

  return(graph)
}


#' @rdname PPC-discrete
#' @export
ppc_bars_data <-
  function(y,
           yrep,
           group = NULL,
           prob = 0.9,
           freq = TRUE) {
    stopifnot(0 <= prob && prob <= 1, is.logical(freq))
    y <- validate_y(y)
    yrep <- validate_predictions(yrep, length(y))
    if (!all_whole_number(y)) {
      abort("ppc_bars expects 'y' to be discrete.")
    }
    if (!all_whole_number(yrep)) {
      abort("ppc_bars expects 'yrep' to be discrete.")
    }
    if (!is.null(group)) {
      group <- validate_group(group, length(y))
    }
    .ppc_bars_data(
      y = y,
      yrep = yrep,
      group = group,
      prob = prob,
      freq = freq
    )
  }


# internal ----------------------------------------------------------------

#' Internal function for `ppc_bars_data()`
#'
#' @noRd
#' @param y,yrep,group User's already validated `y`, `yrep`, and (if applicable)
#'   `group` arguments.
#' @param prob,freq User's `prob` and `freq` arguments.
#' @importFrom dplyr %>% ungroup count arrange mutate summarise across full_join rename all_of
.ppc_bars_data <- function(y, yrep, group = NULL, prob = 0.9, freq = TRUE) {
  alpha <- (1 - prob) / 2
  probs <- sort(c(alpha, 0.5, 1 - alpha))

  # Prepare for final summary
  lo  <- function(x) quantile(x, probs[1])
  mid <- function(x) quantile(x, probs[2])
  hi  <- function(x) quantile(x, probs[3])
  summary_var <- ifelse(freq, "n", "proportion")
  summary_funs <- list(l = lo, m = mid, h = hi) # use l,m,h like in our intervals data

  # Set a dummy group for ungrouped data
  if (is.null(group)) {
    was_null_group <- TRUE
    group <- 1
  } else{
    was_null_group <- FALSE
  }

  tmp_data <- data.frame(
    group = factor(group),
    y = y,
    yrep = t(yrep)
  )
  data <-
    reshape2::melt(tmp_data, id.vars = "group") %>%
    count(.data$group, .data$value, .data$variable) %>%
    tidyr::complete(.data$group, .data$value, .data$variable, fill = list(n = 0)) %>%
    group_by(.data$variable, .data$group) %>%
    mutate(proportion = .data$n / sum(.data$n)) %>%
    ungroup() %>%
    group_by(.data$group, .data$value)

  yrep_summary <- data %>%
    dplyr::filter(!.data$variable == "y") %>%
    summarise(across(all_of(summary_var), summary_funs, .names = "{.fn}")) %>%
    ungroup() %>%
    arrange(.data$group, .data$value)

  y_summary <- data %>%
    dplyr::filter(.data$variable == "y") %>%
    ungroup() %>%
    rename(y_obs = all_of(summary_var)) %>%
    arrange(.data$group, .data$value)

  cols <- syms(c(if (!was_null_group) "group", "x", "y_obs", "l", "m", "h"))

  # full join to keep empty cells
  full_join(yrep_summary, y_summary, by = c("group", "value")) %>%
    rename(x = "value") %>%
    arrange(.data$x) %>%
    select(!!!cols)
}


#' Create the facet layer for grouped bar plots
#' @param facet_args User's `facet_args` argument.
#' @param scales_default String to use for `scales` argument to `facet_wrap()`
#'   if not specified by user. The default is `"fixed"` for bar plots. This is
#'   the same as `ggplot2::facet_wrap()` but different than
#'   `bayesplot::intervals_group_facets()`, which has a default of `"free"`.
#' @return Object returned by `facet_wrap()`.
#' @noRd
bars_group_facets <- function(facet_args, scales_default = "fixed") {
  facet_args[["facets"]] <- "group"
  facet_args[["scales"]] <- facet_args[["scales"]] %||% scales_default
  do.call("facet_wrap", facet_args)
}

fixed_y <- function(facet_args) {
  !isTRUE(facet_args[["scales"]] %in% c("free", "free_y"))
}

#' Internal function for `ppc_rootogram()`
#' @param y,yrep User's `y` and `yrep` arguments.
#' @param style,prob,bound_distinct User's `style`, `prob`, and
#' (if applicable) `bound_distinct` arguments.
#' @noRd
.ppc_rootogram_data <- function(y,
                              yrep,
                              style = c("standing", "hanging", "suspended", "discrete"),
                              prob = 0.9,
                              bound_distinct) {

  y <- validate_y(y)
  yrep <- validate_predictions(yrep, length(y))
  if (!all_counts(y)) {
    abort("ppc_rootogram expects counts as inputs to 'y'.")
  }
  if (!all_counts(yrep)) {
    abort("ppc_rootogram expects counts as inputs to 'yrep'.")
  }

  alpha <- (1 - prob) / 2
  probs <- c(alpha, 1 - alpha)
  ymax <- max(y, yrep)
  xpos <- 0L:ymax

  # prepare a table for yrep
  tyrep <- as.list(rep(NA, nrow(yrep)))
  for (i in seq_along(tyrep)) {
    tyrep[[i]] <- table(yrep[i,])
    matches <- match(xpos, rownames(tyrep[[i]]))
    tyrep[[i]] <- as.numeric(tyrep[[i]][matches])
  }
  tyrep <- do.call(rbind, tyrep)
  tyrep[is.na(tyrep)] <- 0

  # discrete style
  if (style == "discrete"){
    pred_median <- apply(tyrep, 2, median)
    pred_quantile <- t(apply(tyrep, 2, quantile, probs = probs))
    colnames(pred_quantile) <- c("lower", "upper")

    # prepare a table for y
    ty <- table(y)
    y_count <- as.numeric(ty[match(xpos, rownames(ty))])
    y_count[is.na(y_count)] <- 0

    if (bound_distinct) {
      # If the observed count is within the bounds of the predicted quantiles,
      # use a different shape for the point
      obs_shape <- obs_shape <- ifelse(y_count >= pred_quantile[, "lower"] & y_count <= pred_quantile[, "upper"], "In", "Out")
    } else {
      obs_shape <- rep("y", length(y_count)) # all points are the same shape for observed
    }

    data <- data.frame(
      xpos = xpos,
      obs = y_count,
      pred_median = pred_median,
      lower = pred_quantile[, "lower"],
      upper = pred_quantile[, "upper"],
      obs_shape = obs_shape
    )
  }
  # standing, hanging, suspended styles
  else {
    tyexp <- sqrt(colMeans(tyrep))
    tyquantile <- sqrt(t(apply(tyrep, 2, quantile, probs = probs)))
    colnames(tyquantile) <- c("tylower", "tyupper")

    # prepare a table for y
    ty <- table(y)
    ty <- sqrt(as.numeric(ty[match(xpos, rownames(ty))]))
    if (style == "suspended") {
      ty <- tyexp - ty
    }
    ty[is.na(ty)] <- 0
    ypos <- ty / 2
    if (style == "hanging") {
      ypos <- tyexp - ypos
    }

    data <- data.frame(xpos, ypos, ty, tyexp, tyquantile)
  }

  return(data)
}