1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
#' PPC intervals
#'
#' Medians and central interval estimates of `yrep` with `y` overlaid.
#' See the **Plot Descriptions** section, below.
#'
#' @name PPC-intervals
#' @family PPCs
#'
#' @template args-y-yrep
#' @template args-group
#' @template args-facet_args
#' @template args-prob-prob_outer
#' @param x A numeric vector to use as the x-axis
#' variable. For example, `x` could be a predictor variable from a
#' regression model, a time variable for time-series models, etc. If `x`
#' is missing or `NULL` then the observation index is used for the x-axis.
#' @param alpha,size,fatten,linewidth Arguments passed to geoms. For ribbon
#' plots `alpha` is passed to [ggplot2::geom_ribbon()] to control the opacity
#' of the outer ribbon and `size` is passed to [ggplot2::geom_line()] to
#' control the size of the line representing the median prediction (`size=0`
#' will remove the line). For interval plots `alpha`, `size`, `fatten`, and
#' `linewidth` are passed to [ggplot2::geom_pointrange()] (`fatten=0` will
#' remove the point estimates).
#' @param ... Currently unused.
#'
#' @template return-ggplot-or-data
#'
#' @template reference-vis-paper
#' @templateVar bdaRef (Ch. 6)
#' @template reference-bda
#'
#' @section Plot Descriptions:
#' \describe{
#' \item{`ppc_intervals(), ppc_ribbon()`}{
#' `100*prob`% central intervals for `yrep` at each `x`
#' value. `ppc_intervals()` plots intervals as vertical bars with points
#' indicating `yrep` medians and darker points indicating observed
#' `y` values. `ppc_ribbon()` plots a ribbon of connected intervals
#' with a line through the median of `yrep` and a darker line connecting
#' observed `y` values. In both cases an optional `x` variable can
#' also be specified for the x-axis variable.
#'
#' Depending on the number of observations and the variability in the
#' predictions at different values of `x`, one of these plots may be easier
#' to read than the other.
#' }
#' \item{`ppc_intervals_grouped(), ppc_ribbon_grouped()`}{
#' Same as `ppc_intervals()` and `ppc_ribbon()`, respectively, but a
#' separate plot (facet) is generated for each level of a grouping variable.
#' }
#' }
#'
#' @examples
#' y <- rnorm(50)
#' yrep <- matrix(rnorm(5000, 0, 2), ncol = 50)
#'
#' color_scheme_set("brightblue")
#' ppc_intervals(y, yrep)
#' ppc_ribbon(y, yrep)
#' ppc_ribbon(y, yrep, y_draw = "points")
#' \dontrun{
#' ppc_ribbon(y, yrep, y_draw = "both")
#' }
#'
#' ppc_intervals(y, yrep, size = 1.5, fatten = 0) # remove the yrep point estimates
#'
#' color_scheme_set("teal")
#' year <- 1950:1999
#' ppc_intervals(y, yrep, x = year, fatten = 1) + ggplot2::xlab("Year")
#' ppc_ribbon(y, yrep, x = year) + ggplot2::xlab("Year")
#'
#' color_scheme_set("pink")
#' year <- rep(2000:2009, each = 5)
#' group <- gl(5, 1, length = 50, labels = LETTERS[1:5])
#' ppc_ribbon_grouped(y, yrep, x = year, group, y_draw = "both") +
#' ggplot2::scale_x_continuous(breaks = pretty)
#'
#' ppc_ribbon_grouped(y, yrep, x = year, group,
#' facet_args = list(scales = "fixed")) +
#' xaxis_text(FALSE) +
#' xaxis_ticks(FALSE) +
#' panel_bg(fill = "gray20")
#'
#' # get the data frames used to make the ggplots
#' ppc_dat <- ppc_intervals_data(y, yrep, x = year, prob = 0.5)
#' ppc_group_dat <- ppc_intervals_data(y, yrep, x = year, group = group, prob = 0.5)
#'
#' \dontrun{
#' library("rstanarm")
#' fit <- stan_glmer(mpg ~ wt + (1|cyl), data = mtcars, refresh = 0)
#' yrep <- posterior_predict(fit)
#'
#' color_scheme_set("purple")
#' ppc_intervals(y = mtcars$mpg, yrep = yrep, x = mtcars$wt, prob = 0.8) +
#' panel_bg(fill="gray90", color = NA) +
#' grid_lines(color = "white")
#'
#' ppc_ribbon(y = mtcars$mpg, yrep = yrep, x = mtcars$wt,
#' prob = 0.6, prob_outer = 0.8)
#'
#' ppc_ribbon_grouped(y = mtcars$mpg, yrep = yrep, x = mtcars$wt,
#' group = mtcars$cyl)
#'
#'
#' color_scheme_set("gray")
#' ppc_intervals(mtcars$mpg, yrep, prob = 0.5) +
#' ggplot2::scale_x_continuous(
#' labels = rownames(mtcars),
#' breaks = 1:nrow(mtcars)
#' ) +
#' xaxis_text(angle = -70, vjust = 1, hjust = 0) +
#' xaxis_title(FALSE)
#'
#' }
#'
#'
NULL
#' @rdname PPC-intervals
#' @export
ppc_intervals <-
function(y,
yrep,
x = NULL,
...,
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 1,
fatten = 2.5,
linewidth = 1) {
dots <- list(...)
if (!from_grouped(dots)) {
check_ignored_arguments(...)
dots$group <- NULL
}
data <-
ppc_intervals_data(
y = y,
yrep = yrep,
x = x,
group = dots$group,
prob = prob,
prob_outer = prob_outer
)
ggplot(data) +
intervals_inner_aes(
needs_y = TRUE,
color = "yrep",
fill = "yrep"
) +
geom_linerange(
mapping = intervals_outer_aes(color = "yrep"),
alpha = alpha,
size = size,
linewidth = linewidth
) +
geom_pointrange(
shape = 21,
stroke = 0.5,
size = size,
fatten = fatten,
linewidth = linewidth
) +
geom_point(
mapping = aes(
y = .data$y_obs,
color = "y",
fill = "y"
),
shape = 21,
stroke = 0.5,
size = 1
) +
scale_color_ppc() +
scale_fill_ppc() +
intervals_axis_labels(has_x = !is.null(x)) +
bayesplot_theme_get()
}
#' @rdname PPC-intervals
#' @export
ppc_intervals_grouped <-
function(y,
yrep,
x = NULL,
group,
...,
facet_args = list(),
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 1,
fatten = 2.5,
linewidth = 1) {
check_ignored_arguments(...)
call <- match.call(expand.dots = FALSE)
g <- eval(ungroup_call("ppc_intervals", call), parent.frame())
g +
intervals_group_facets(facet_args) +
force_axes_in_facets()
}
#' @rdname PPC-intervals
#' @export
#' @param y_draw For ribbon plots only, a string specifying how to draw `y`. Can
#' be `"line"` (the default), `"points"`, or `"both"`.
ppc_ribbon <-
function(y,
yrep,
x = NULL,
...,
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 0.25,
y_draw = c("line", "points", "both")) {
y_draw <- match.arg(y_draw)
dots <- list(...)
if (!from_grouped(dots)) {
check_ignored_arguments(...)
dots$group <- NULL
}
data <-
ppc_intervals_data(
y = y,
yrep = yrep,
x = x,
group = dots$group,
prob = prob,
prob_outer = prob_outer
)
g <- ggplot(data) +
intervals_inner_aes(fill = "yrep", color = "yrep") +
geom_ribbon(
mapping = intervals_outer_aes(fill = "yrep", color = "yrep"),
color = NA,
linewidth = 0.2 * size,
alpha = alpha
) +
geom_ribbon(
mapping = intervals_outer_aes(),
fill = NA,
color = get_color("m"),
linewidth = 0.2 * size,
alpha = 1
) +
geom_ribbon(linewidth = 0.5 * size) +
geom_line(
mapping = aes(y = .data$m),
color = get_color("m"),
linewidth = size
) +
geom_blank(aes(fill = "y"))
if (y_draw == "line" || y_draw == "both") {
g <- g + geom_line(
aes(y = .data$y_obs, color = "y"),
linewidth = 0.5
)
}
if (y_draw == "points" || y_draw == "both") {
g <- g + geom_point(
mapping = aes(y = .data$y_obs, color = "y", fill = "y"),
shape = 21,
size = 1.5
)
}
g +
scale_color_ppc() +
scale_fill_ppc(values = c(NA, get_color("l")), na.value = NA) +
intervals_axis_labels(has_x = !is.null(x)) +
bayesplot_theme_get()
}
#' @export
#' @rdname PPC-intervals
ppc_ribbon_grouped <-
function(y,
yrep,
x = NULL,
group,
...,
facet_args = list(),
prob = 0.5,
prob_outer = 0.9,
alpha = 0.33,
size = 0.25,
y_draw = c("line", "points", "both")) {
check_ignored_arguments(...)
call <- match.call(expand.dots = FALSE)
g <- eval(ungroup_call("ppc_ribbon", call), parent.frame())
g +
intervals_group_facets(facet_args) +
force_axes_in_facets()
}
#' @rdname PPC-intervals
#' @export
ppc_intervals_data <-
function(y,
yrep,
x = NULL,
group = NULL,
...,
prob = 0.5,
prob_outer = 0.9) {
check_ignored_arguments(...)
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
x <- validate_x(x, y)
if (!is.null(group)) {
group <- validate_group(group, length(y))
}
.ppd_intervals_data(
predictions = yrep,
y = y,
x = x,
group = group,
prob = prob,
prob_outer = prob_outer
)
}
#' @rdname PPC-intervals
#' @export
ppc_ribbon_data <- ppc_intervals_data
|