File: ppc-test-statistics.R

package info (click to toggle)
r-cran-bayesplot 1.14.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,288 kB
  • sloc: sh: 13; makefile: 2
file content (450 lines) | stat: -rw-r--r-- 12,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#' PPC test statistics
#'
#' @description The distribution of a (test) statistic `T(yrep)`, or a pair of
#'   (test) statistics, over the simulated datasets in `yrep`, compared to the
#'   observed value `T(y)` computed from the data `y`. See the
#'   **Plot Descriptions** and **Details** sections, below, as
#'   well as Gabry et al. (2019).
#'
#'   **NOTE:** Although the default test statistic
#'   is the mean, this is unlikely to detect anything interesting in most cases.
#'   In general we recommend using some other test statistic as discussed in
#'   Section 5 of Gabry et al. (2019).
#'
#' @name PPC-test-statistics
#' @aliases PPC-statistics
#' @family PPCs
#'
#' @template args-y-yrep
#' @template args-group
#' @template args-facet_args
#' @template args-hist
#' @template args-hist-freq
#' @param stat A single function or a string naming a function, except for the
#'   2D plot which requires a vector of exactly two names or functions. In all
#'   cases the function(s) should take a vector input and return a scalar
#'   statistic. If specified as a string (or strings) then the legend will
#'   display the function name(s). If specified as a function (or functions)
#'   then generic naming is used in the legend.
#' @param ... Currently unused.
#' @param discrete For `ppc_stat()` and `ppc_stat_grouped()`, if `TRUE` then a
#'   bar chart is used instead of a histogram.
#' @template details-binomial
#' @template return-ggplot-or-data
#'
#' @template reference-vis-paper
#' @templateVar bdaRef (Ch. 6)
#' @template reference-bda
#'
#' @section Plot Descriptions:
#' \describe{
#'   \item{`ppc_stat()`, `ppc_stat_freqpoly()`}{
#'    A histogram/bar plot or frequency polygon of the distribution of a statistic
#'    computed by applying `stat` to each dataset (row) in `yrep`. The value of
#'    the statistic in the observed data, `stat(y)`, is overlaid as a vertical
#'    line. More details and example usage of `ppc_stat()` can be found in Gabry
#'    et al. (2019).
#'   }
#'   \item{`ppc_stat_grouped()`,`ppc_stat_freqpoly_grouped()`}{
#'    The same as `ppc_stat()` and `ppc_stat_freqpoly()`, but a separate plot is
#'    generated for each level of a grouping variable. More details and example
#'    usage of `ppc_stat_grouped()` can be found in Gabry et al. (2019).
#'   }
#'   \item{`ppc_stat_2d()`}{
#'    A scatterplot showing the joint distribution of two statistics
#'    computed over the datasets (rows) in `yrep`. The value of the
#'    statistics in the observed data is overlaid as large point.
#'   }
#' }
#'
#' @examples
#' y <- example_y_data()
#' yrep <- example_yrep_draws()
#' ppc_stat(y, yrep, stat = "median")
#' ppc_stat(y, yrep, stat = "sd") + legend_none()
#'
#' # discrete data example
#' set.seed(0)
#' y_discrete <- rbinom(20, 1, 0.2)
#' yrep_discrete <- matrix(rbinom(2000, 1, prob = 0.4), 1000, 20, byrow = TRUE)
#' ppc_stat(y_discrete, yrep_discrete, stat = "mean", discrete = TRUE)
#'
#' # use your own function for the 'stat' argument
#' color_scheme_set("brightblue")
#' q25 <- function(y) quantile(y, 0.25)
#' ppc_stat(y, yrep, stat = "q25") # legend includes function name
#'
#' # can define the function in the 'stat' argument instead of
#' # using its name but then the legend doesn't include the function name
#' ppc_stat(y, yrep, stat = function(y) quantile(y, 0.25))
#'
#' # plots by group
#' color_scheme_set("teal")
#' group <- example_group_data()
#' ppc_stat_grouped(y, yrep, group, stat = "median")
#' ppc_stat_grouped(y, yrep, group, stat = "mad") + yaxis_text()
#'
#' # discrete data example with groups
#' group_discrete <- rep(c("First Half","Second Half"), each = 10)
#' ppc_stat_grouped(y_discrete, yrep_discrete, group_discrete, stat = "mean", discrete = TRUE)
#'
#' # force y-axes to have same scales, allow x axis to vary
#' ppc_stat_grouped(y, yrep, group, facet_args = list(scales = "free_x")) + yaxis_text()
#'
#' # the freqpoly plots use frequency polygons instead of histograms
#' ppc_stat_freqpoly(y, yrep, stat = "median")
#' ppc_stat_freqpoly_grouped(y, yrep, group, stat = "median", facet_args = list(nrow = 2))
#'
#' # ppc_stat_2d allows 2 statistics and makes a scatterplot
#' bayesplot_theme_set(ggplot2::theme_linedraw())
#' color_scheme_set("viridisE")
#' ppc_stat_2d(y, yrep, stat = c("mean", "sd"))
#'
#' bayesplot_theme_set(ggplot2::theme_grey())
#' color_scheme_set("brewer-Paired")
#' ppc_stat_2d(y, yrep, stat = c("median", "mad"))
#'
#' # reset aesthetics
#' color_scheme_set()
#' bayesplot_theme_set()
#'
NULL

#' @rdname PPC-test-statistics
#' @export
ppc_stat <-
  function(y,
           yrep,
           stat = "mean",
           ...,
           discrete = FALSE,
           binwidth = NULL,
           bins = NULL,
           breaks = NULL,
           freq = TRUE) {
    stopifnot(length(stat) == 1)
    message_if_using_mean(stat)
    dots <- list(...)
    if (!from_grouped(dots)) {
      check_ignored_arguments(...)
      dots$group <- NULL
    }

    data <- ppc_stat_data(
      y = y,
      yrep = yrep,
      group = dots$group,
      stat = match.fun(stat)
    )

    graph <- ggplot(
      data = dplyr::filter(data, .data$variable != "y"),
      mapping = set_hist_aes(freq)
    )

    graph <- if (discrete) {
      graph + geom_bar(
        aes(fill = "yrep"),
        color = get_color("lh"),
        linewidth = 0.25,
        na.rm = TRUE,
      )
    } else {
      graph + geom_histogram(
        aes(fill = "yrep"),
        color = get_color("lh"),
        linewidth = 0.25,
        na.rm = TRUE,
        binwidth = binwidth,
        bins = bins,
        breaks = breaks
      )
    }

    graph + geom_vline(
        data = dplyr::filter(data, .data$variable == "y"),
        mapping = aes(xintercept = .data$value, color = "y"),
        linewidth = 1.5
      ) +
      scale_color_ppc(values = get_color("dh"), labels = Ty_label()) +
      scale_fill_ppc(values = get_color("l"), labels = Tyrep_label()) +
      guides(
        color = guide_legend(title = NULL),
        fill = guide_legend(
          order = 1,
          title = stat_legend_title(stat, deparse(substitute(stat)))
        )
      ) +
      dont_expand_y_axis() +
      bayesplot_theme_get() +
      no_legend_spacing() +
      xaxis_title(FALSE) +
      yaxis_text(FALSE) +
      yaxis_ticks(FALSE) +
      yaxis_title(FALSE)
  }


#' @rdname PPC-test-statistics
#' @export
ppc_stat_grouped <-
  function(y,
           yrep,
           group,
           stat = "mean",
           ...,
           discrete = FALSE,
           facet_args = list(),
           binwidth = NULL,
           bins = NULL,
           breaks = NULL,
           freq = TRUE) {
    check_ignored_arguments(...)
    call <- match.call(expand.dots = FALSE)
    g <- eval(ungroup_call("ppc_stat", call), parent.frame())
    g +
      stat_group_facets(facet_args) +
      force_axes_in_facets()
  }


#' @rdname PPC-test-statistics
#' @export
ppc_stat_freqpoly <-
  function(y,
           yrep,
           stat = "mean",
           ...,
           facet_args = list(),
           binwidth = NULL,
           bins = NULL,
           freq = TRUE) {
    stopifnot(length(stat) == 1)
    message_if_using_mean(stat)
    dots <- list(...)
    if (!from_grouped(dots)) {
      check_ignored_arguments(...)
      dots$group <- NULL
    }

    data <- ppc_stat_data(
      y = y,
      yrep = yrep,
      group = dots$group,
      stat = match.fun(stat)
    )

    ggplot(
      data = dplyr::filter(data, .data$variable != "y"),
      mapping = set_hist_aes(freq)
    ) +
      geom_freqpoly(
        aes(color = "yrep"),
        linewidth = 0.5,
        na.rm = TRUE,
        binwidth = binwidth,
        bins = bins
      ) +
      geom_vline(
        data = dplyr::filter(data, .data$variable == "y"),
        mapping = aes(xintercept = .data$value, color = "y"),
        show.legend = TRUE,
        linewidth = 1
      ) +
      scale_color_ppc(
        name = stat_legend_title(stat, deparse(substitute(stat))),
        values = set_names(get_color(c("m", "dh")), c("yrep", "y")),
        labels = c(yrep = Tyrep_label(), y = Ty_label())
      ) +
      dont_expand_y_axis(c(0.005, 0)) +
      bayesplot_theme_get() +
      xaxis_title(FALSE) +
      yaxis_text(FALSE) +
      yaxis_ticks(FALSE) +
      yaxis_title(FALSE)
  }


#' @rdname PPC-test-statistics
#' @export
ppc_stat_freqpoly_grouped <-
  function(y,
           yrep,
           group,
           stat = "mean",
           ...,
           facet_args = list(),
           binwidth = NULL,
           bins = NULL,
           freq = TRUE) {
    check_ignored_arguments(...)
    call <- match.call(expand.dots = FALSE)
    g <- eval(ungroup_call("ppc_stat_freqpoly", call), parent.frame())
    g +
      stat_group_facets(facet_args) +
      force_axes_in_facets()
  }


#' @rdname PPC-test-statistics
#' @export
#' @param size,alpha For the 2D plot only, arguments passed to
#'   [ggplot2::geom_point()] to control the appearance of scatterplot points.
ppc_stat_2d <- function(y,
                        yrep,
                        stat = c("mean", "sd"),
                        ...,
                        size = 2.5,
                        alpha = 0.7) {

  check_ignored_arguments(...)

  if (length(stat) != 2) {
    abort("For ppc_stat_2d the 'stat' argument must have length 2.")
  }
  message_if_using_mean(stat[1])
  message_if_using_mean(stat[2])

  if (is.character(stat)) {
    lgnd_title <- bquote(italic(T) == (list(.(stat[1]), .(stat[2]))))
    stat_labs <- stat
  } else {
    lgnd_title <- expression(italic(T) == (list(italic(T)[1], italic(T)[2])))
    stat_labs <- expression(italic(T)[1], italic(T)[2])
  }

  data <- ppc_stat_data(
    y = y,
    yrep = yrep,
    group = NULL,
    stat = c(match.fun(stat[[1]]), match.fun(stat[[2]]))
  )
  y_segment_data <- stat_2d_segment_data(data)
  y_point_data <- data.frame(
    x = y_segment_data[1, "x"],
    y = y_segment_data[2, "y"]
  )

  ggplot(data) +
    geom_point(
      aes(
        x = .data$value,
        y = .data$value2,
        fill = "yrep",
        color = "yrep"
      ),
      shape = 21,
      size = size,
      alpha = alpha
    ) +
    geom_segment(
      data = y_segment_data,
      aes(
        x = .data$x,
        y = .data$y,
        xend = .data$xend,
        yend = .data$yend,
        color = "y"
      ),
      linetype = 2,
      linewidth = 0.4,
      show.legend = FALSE
    ) +
    geom_point(
      data = y_point_data,
      mapping = aes(
        x = .data$x,
        y = .data$y,
        fill = "y",
        color = "y"
      ),
      size = size * 1.5,
      shape = 21,
      stroke = 0.75
    ) +
    scale_fill_ppc(lgnd_title, labels = c(Ty_label(), Tyrep_label())) +
    scale_color_ppc(lgnd_title, labels = c(Ty_label(), Tyrep_label())) +
    labs(x = stat_labs[1], y = stat_labs[2]) +
    bayesplot_theme_get()
}


#' @rdname PPC-test-statistics
#' @export
ppc_stat_data <- function(y, yrep, group = NULL, stat) {
  if (!(length(stat) %in% 1:2)) {
    abort("'stat' must have length 1 or 2.")
  }

  y <- validate_y(y)
  yrep <- validate_predictions(yrep, length(y))
  if (!is.null(group)) {
    group <- validate_group(group, length(y))
  }

  if (length(stat) == 1) {
    stat <- match.fun(stat)
  } else {
    stat <- list(match.fun(stat[[1]]), match.fun(stat[[2]]))
  }

  .ppd_stat_data(
    predictions = yrep,
    y = y,
    group = group,
    stat = stat
  )
}


# internal ----------------------------------------------------------------

#' Make legend title for ppc_stat,ppc_stat_grouped,ppc_stat_freqpoly_grouped
#'
#' @param stat The user's `stat` argument.
#' @param stat_txt `deparse(substitute())` applied to users `stat` argument.
#' @return Either throws an error or returns a legend title (possibly `NULL`).
#' @noRd
stat_legend_title <- function(stat, stat_txt) {
  stopifnot(is.character(stat) || is.function(stat))
  if (is.character(stat)) {
    lgnd_txt <- stat
  } else {
    lgnd_txt <- if (length(stat_txt) == 1 && !grepl("^function", stat_txt))
      stat_txt else NA
  }
  if (is.na(lgnd_txt))
    return(NULL)

  bquote(italic(T) == .(lgnd_txt))
}


#' Make data frame for geom_segment() for ppc_stat_2d()
#' @param data Data frame from `ppc_stat_data()`.
#' @return Data frame with two rows and four columns (`x`,`xend`,`y`,`yend`).
#' @noRd
stat_2d_segment_data <- function(data) {
  y_data <- dplyr::filter(data, .data$variable == "y")
  stats <- c(y_data$value[1], y_data$value2[1])
  data.frame(
    x = c(stats[1], -Inf),
    xend = c(stats[1], stats[1]),
    y = c(-Inf, stats[2]),
    yend = c(stats[2], stats[2])
  )
}


Ty_label <- function() expression(italic(T(italic(y))))
Tyrep_label <- function() expression(italic(T)(italic(y)[rep]))


message_if_using_mean <- function(stat) {
  if (is.character(stat) && stat == "mean") {
    message(
      "Note: in most cases the default test statistic 'mean' is ",
      "too weak to detect anything of interest."
    )
  }
}