File: visual-mcmc-diagnostics.R

package info (click to toggle)
r-cran-bayesplot 1.14.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,288 kB
  • sloc: sh: 13; makefile: 2
file content (242 lines) | stat: -rw-r--r-- 9,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
params <-
list(EVAL = TRUE)

## ----SETTINGS-knitr, include=FALSE--------------------------------------------
stopifnot(require("knitr"))
library("bayesplot")
knitr::opts_chunk$set(
  dev = "png",
  dpi = 150,
  fig.asp = 0.618,
  fig.width = 5,
  out.width = "60%",
  fig.align = "center",
  comment = NA,
  eval = if (isTRUE(exists("params"))) params$EVAL else FALSE
)

## ----pkgs, include=FALSE------------------------------------------------------
library("bayesplot")
library("ggplot2")
library("rstan")
library("dplyr") #Used only for consistency checks
rstan_options(auto_write = TRUE) #Helpful throughout development
bayesplot_theme_set()

## ----setup, eval=FALSE--------------------------------------------------------
# library("bayesplot")
# library("ggplot2")
# library("rstan")

## ----schools_dat--------------------------------------------------------------
schools_dat <- list(
  J = 8, 
  y = c(28,  8, -3,  7, -1,  1, 18, 12),
  sigma = c(15, 10, 16, 11,  9, 11, 10, 18)
)

## ----compile-models, eval=FALSE-----------------------------------------------
# schools_mod_cp <- stan_model("schools_mod_cp.stan")
# schools_mod_ncp <- stan_model("schools_mod_ncp.stan")

## ----fit-models-hidden, results='hide', message=FALSE-------------------------
fit_cp <- sampling(schools_mod_cp, data = schools_dat, seed = 803214055, control = list(adapt_delta = 0.9))
fit_ncp <- sampling(schools_mod_ncp, data = schools_dat, seed = 457721433, control = list(adapt_delta = 0.9))

## ----extract-draws------------------------------------------------------------
# Extract posterior draws for later use
posterior_cp <- as.array(fit_cp)
posterior_ncp <- as.array(fit_ncp)

## ----available_mcmc-nuts------------------------------------------------------
available_mcmc(pattern = "_nuts_")

## ----extract-nuts-info--------------------------------------------------------
lp_cp <- log_posterior(fit_cp)
head(lp_cp)
np_cp <- nuts_params(fit_cp)
head(np_cp)

# for the second model
lp_ncp <- log_posterior(fit_ncp)
np_ncp <- nuts_params(fit_ncp)

## ----echo=FALSE, warning=FALSE------------------------------------------------
# On rare occasions, the fits may not be illustrative. Currently the seed is
# fixed, but if something in Stan changes and the fixed seeds produce unexpected
# results (which should be rare), we want to know.
n_divergent_cp <- np_cp %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()
n_divergent_ncp <- np_ncp %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()

if(n_divergent_cp < 10 || n_divergent_cp > 2000) {
  stop("Unexpected number of divergences in the CP model. Change seed?")
}
if(n_divergent_ncp > 0) {
  stop("Divergences in the NCP model. Fix a bug / change seed?")
}


## ----mcmc_parcoord-1----------------------------------------------------------
color_scheme_set("darkgray")
mcmc_parcoord(posterior_cp, np = np_cp)

## ----mcmc_pairs---------------------------------------------------------------
mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"),
           off_diag_args = list(size = 0.75))

## ----mcmc_scatter-1-----------------------------------------------------------
# assign to an object so we can reuse later
scatter_theta_cp <- mcmc_scatter(
  posterior_cp, 
  pars = c("theta[1]", "tau"), 
  transform = list(tau = "log"), # can abbrev. 'transformations'
  np = np_cp, 
  size = 1
)
scatter_theta_cp

## ----mcmc_scatter-2-----------------------------------------------------------
scatter_eta_ncp <- mcmc_scatter(
  posterior_ncp, 
  pars = c("eta[1]", "tau"), 
  transform = list(tau = "log"), 
  np = np_ncp, 
  size = 1
)
scatter_eta_ncp

## ----mcmc_scatter-3-----------------------------------------------------------
# A function we'll use several times to plot comparisons of the centered 
# parameterization (cp) and the non-centered parameterization (ncp). See
# help("bayesplot_grid") for details on the bayesplot_grid function used here.
compare_cp_ncp <- function(cp_plot, ncp_plot, ncol = 2, ...) {
  bayesplot_grid(
    cp_plot, ncp_plot, 
    grid_args = list(ncol = ncol),
    subtitles = c("Centered parameterization", 
                  "Non-centered parameterization"),
    ...
  )
}


scatter_theta_ncp <- mcmc_scatter(
  posterior_ncp, 
  pars = c("theta[1]", "tau"), 
  transform = list(tau = "log"), 
  np = np_ncp, 
  size = 1
)

compare_cp_ncp(scatter_theta_cp, scatter_theta_ncp, ylim = c(-8, 4))

## ----mcmc_trace---------------------------------------------------------------
color_scheme_set("mix-brightblue-gray")
mcmc_trace(posterior_cp, pars = "tau", np = np_cp) + 
  xlab("Post-warmup iteration")

## ----echo=FALSE---------------------------------------------------------------
#A check that the chosen window still relevant
n_divergent_in_window <- np_cp %>% filter(Parameter == "divergent__" & Value == 1 & Iteration >= 400 & Iteration <= 600) %>% nrow()

if(n_divergent_in_window < 6) {
  divergences <- np_cp %>% filter(Parameter == "divergent__" & Value == 1) %>% select(Iteration) %>% get("Iteration", .) %>% sort() %>% paste(collapse = ",")
  stop(paste("Too few divergences in the selected window for traceplot zoom. Change the window or the random seed.\nDivergences happened at: ", divergences))
}

## ----mcmc_trace_zoom----------------------------------------------------------
mcmc_trace(posterior_cp, pars = "tau", np = np_cp, window = c(200,400)) + 
  xlab("Post-warmup iteration")

## ----mcmc_nuts_divergence-----------------------------------------------------
color_scheme_set("red")
mcmc_nuts_divergence(np_cp, lp_cp)

## ----mcmc_nuts_divergence-chain-----------------------------------------------
mcmc_nuts_divergence(np_cp, lp_cp, chain = 4)

## ----mcmc_nuts_divergence-2---------------------------------------------------
mcmc_nuts_divergence(np_ncp, lp_ncp)

## ----fit-adapt-delta, results='hide', message=FALSE---------------------------
fit_cp_2 <- sampling(schools_mod_cp, data = schools_dat,
                     control = list(adapt_delta = 0.999), seed = 978245244)
fit_ncp_2 <- sampling(schools_mod_ncp, data = schools_dat,
                      control = list(adapt_delta = 0.999), seed = 843256842)

## ----echo=FALSE, warning=FALSE------------------------------------------------
# On rare occasions, the fits may not be illustrative. Currently the seed is fixed, but if something in Stan changes and the fixed seeds produce unexpected results (which should be rare), we want to know.
n_divergent_cp_2 <- fit_cp_2 %>% nuts_params() %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()
n_divergent_ncp_2 <- fit_ncp_2 %>% nuts_params() %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()

if(n_divergent_cp_2 <= 0) {
  stop("No divergences in CP with increased adapt.delta. Change seed?")
}
if(n_divergent_ncp_2 > 0) {
  stop("Divergences in the NCP model. Fix a bug / change seed?")
}


## ----mcmc_nuts_divergence-3---------------------------------------------------
mcmc_nuts_divergence(nuts_params(fit_cp_2), log_posterior(fit_cp_2))
mcmc_nuts_divergence(nuts_params(fit_ncp_2), log_posterior(fit_ncp_2))

## ----mcmc_nuts_energy-1, message=FALSE----------------------------------------
color_scheme_set("red")
mcmc_nuts_energy(np_cp)

## ----mcmc_nuts_energy-3, message=FALSE, fig.width=8---------------------------
compare_cp_ncp(
  mcmc_nuts_energy(np_cp, binwidth = 1/2),
  mcmc_nuts_energy(np_ncp, binwidth = 1/2)
)

## ----mcmc_nuts_energy-4, message=FALSE,  fig.width=8--------------------------
np_cp_2 <- nuts_params(fit_cp_2)
np_ncp_2 <- nuts_params(fit_ncp_2)

compare_cp_ncp(
  mcmc_nuts_energy(np_cp_2), 
  mcmc_nuts_energy(np_ncp_2)
)

## ----fit_cp_bad_rhat, results='hide'------------------------------------------
fit_cp_bad_rhat <- sampling(schools_mod_cp, data = schools_dat, 
                            iter = 50, init_r = 10, seed = 671254821)

## ----print-rhats--------------------------------------------------------------
rhats <- rhat(fit_cp_bad_rhat)
print(rhats)

## ----echo=FALSE---------------------------------------------------------------
#Check that the fit we got is a sensible example
if(all(rhats < 1.3)) {
  stop("All rhats for the short chain run are low. Change seed?")
}

## ----mcmc_rhat-1--------------------------------------------------------------
color_scheme_set("brightblue") # see help("color_scheme_set")
mcmc_rhat(rhats)

## ----mcmc_rhat-2--------------------------------------------------------------
mcmc_rhat(rhats) + yaxis_text(hjust = 1)

## ----mcmc_rhat-3--------------------------------------------------------------
mcmc_rhat(rhat = rhat(fit_cp)) + yaxis_text(hjust = 0)

## ----print-neff-ratios--------------------------------------------------------
ratios_cp <- neff_ratio(fit_cp)
print(ratios_cp)
mcmc_neff(ratios_cp, size = 2)

## ----mcmc_neff-compare--------------------------------------------------------
neff_cp <- neff_ratio(fit_cp, pars = c("theta", "mu", "tau"))
neff_ncp <- neff_ratio(fit_ncp, pars = c("theta", "mu", "tau"))
compare_cp_ncp(mcmc_neff(neff_cp), mcmc_neff(neff_ncp), ncol = 1)

## ----mcmc_acf, out.width = "70%"----------------------------------------------
compare_cp_ncp(
  mcmc_acf(posterior_cp, pars = "theta[1]", lags = 10),
  mcmc_acf(posterior_ncp, pars = "eta[1]", lags = 10)
)