1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
params <-
list(EVAL = TRUE)
## ----SETTINGS-knitr, include=FALSE--------------------------------------------
stopifnot(require("knitr"))
library("bayesplot")
knitr::opts_chunk$set(
dev = "png",
dpi = 150,
fig.asp = 0.618,
fig.width = 5,
out.width = "60%",
fig.align = "center",
comment = NA,
eval = if (isTRUE(exists("params"))) params$EVAL else FALSE
)
## ----pkgs, include=FALSE------------------------------------------------------
library("bayesplot")
library("ggplot2")
library("rstan")
library("dplyr") #Used only for consistency checks
rstan_options(auto_write = TRUE) #Helpful throughout development
bayesplot_theme_set()
## ----setup, eval=FALSE--------------------------------------------------------
# library("bayesplot")
# library("ggplot2")
# library("rstan")
## ----schools_dat--------------------------------------------------------------
schools_dat <- list(
J = 8,
y = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18)
)
## ----compile-models, eval=FALSE-----------------------------------------------
# schools_mod_cp <- stan_model("schools_mod_cp.stan")
# schools_mod_ncp <- stan_model("schools_mod_ncp.stan")
## ----fit-models-hidden, results='hide', message=FALSE-------------------------
fit_cp <- sampling(schools_mod_cp, data = schools_dat, seed = 803214055, control = list(adapt_delta = 0.9))
fit_ncp <- sampling(schools_mod_ncp, data = schools_dat, seed = 457721433, control = list(adapt_delta = 0.9))
## ----extract-draws------------------------------------------------------------
# Extract posterior draws for later use
posterior_cp <- as.array(fit_cp)
posterior_ncp <- as.array(fit_ncp)
## ----available_mcmc-nuts------------------------------------------------------
available_mcmc(pattern = "_nuts_")
## ----extract-nuts-info--------------------------------------------------------
lp_cp <- log_posterior(fit_cp)
head(lp_cp)
np_cp <- nuts_params(fit_cp)
head(np_cp)
# for the second model
lp_ncp <- log_posterior(fit_ncp)
np_ncp <- nuts_params(fit_ncp)
## ----echo=FALSE, warning=FALSE------------------------------------------------
# On rare occasions, the fits may not be illustrative. Currently the seed is
# fixed, but if something in Stan changes and the fixed seeds produce unexpected
# results (which should be rare), we want to know.
n_divergent_cp <- np_cp %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()
n_divergent_ncp <- np_ncp %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()
if(n_divergent_cp < 10 || n_divergent_cp > 2000) {
stop("Unexpected number of divergences in the CP model. Change seed?")
}
if(n_divergent_ncp > 0) {
stop("Divergences in the NCP model. Fix a bug / change seed?")
}
## ----mcmc_parcoord-1----------------------------------------------------------
color_scheme_set("darkgray")
mcmc_parcoord(posterior_cp, np = np_cp)
## ----mcmc_pairs---------------------------------------------------------------
mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"),
off_diag_args = list(size = 0.75))
## ----mcmc_scatter-1-----------------------------------------------------------
# assign to an object so we can reuse later
scatter_theta_cp <- mcmc_scatter(
posterior_cp,
pars = c("theta[1]", "tau"),
transform = list(tau = "log"), # can abbrev. 'transformations'
np = np_cp,
size = 1
)
scatter_theta_cp
## ----mcmc_scatter-2-----------------------------------------------------------
scatter_eta_ncp <- mcmc_scatter(
posterior_ncp,
pars = c("eta[1]", "tau"),
transform = list(tau = "log"),
np = np_ncp,
size = 1
)
scatter_eta_ncp
## ----mcmc_scatter-3-----------------------------------------------------------
# A function we'll use several times to plot comparisons of the centered
# parameterization (cp) and the non-centered parameterization (ncp). See
# help("bayesplot_grid") for details on the bayesplot_grid function used here.
compare_cp_ncp <- function(cp_plot, ncp_plot, ncol = 2, ...) {
bayesplot_grid(
cp_plot, ncp_plot,
grid_args = list(ncol = ncol),
subtitles = c("Centered parameterization",
"Non-centered parameterization"),
...
)
}
scatter_theta_ncp <- mcmc_scatter(
posterior_ncp,
pars = c("theta[1]", "tau"),
transform = list(tau = "log"),
np = np_ncp,
size = 1
)
compare_cp_ncp(scatter_theta_cp, scatter_theta_ncp, ylim = c(-8, 4))
## ----mcmc_trace---------------------------------------------------------------
color_scheme_set("mix-brightblue-gray")
mcmc_trace(posterior_cp, pars = "tau", np = np_cp) +
xlab("Post-warmup iteration")
## ----echo=FALSE---------------------------------------------------------------
#A check that the chosen window still relevant
n_divergent_in_window <- np_cp %>% filter(Parameter == "divergent__" & Value == 1 & Iteration >= 400 & Iteration <= 600) %>% nrow()
if(n_divergent_in_window < 6) {
divergences <- np_cp %>% filter(Parameter == "divergent__" & Value == 1) %>% select(Iteration) %>% get("Iteration", .) %>% sort() %>% paste(collapse = ",")
stop(paste("Too few divergences in the selected window for traceplot zoom. Change the window or the random seed.\nDivergences happened at: ", divergences))
}
## ----mcmc_trace_zoom----------------------------------------------------------
mcmc_trace(posterior_cp, pars = "tau", np = np_cp, window = c(200,400)) +
xlab("Post-warmup iteration")
## ----mcmc_nuts_divergence-----------------------------------------------------
color_scheme_set("red")
mcmc_nuts_divergence(np_cp, lp_cp)
## ----mcmc_nuts_divergence-chain-----------------------------------------------
mcmc_nuts_divergence(np_cp, lp_cp, chain = 4)
## ----mcmc_nuts_divergence-2---------------------------------------------------
mcmc_nuts_divergence(np_ncp, lp_ncp)
## ----fit-adapt-delta, results='hide', message=FALSE---------------------------
fit_cp_2 <- sampling(schools_mod_cp, data = schools_dat,
control = list(adapt_delta = 0.999), seed = 978245244)
fit_ncp_2 <- sampling(schools_mod_ncp, data = schools_dat,
control = list(adapt_delta = 0.999), seed = 843256842)
## ----echo=FALSE, warning=FALSE------------------------------------------------
# On rare occasions, the fits may not be illustrative. Currently the seed is fixed, but if something in Stan changes and the fixed seeds produce unexpected results (which should be rare), we want to know.
n_divergent_cp_2 <- fit_cp_2 %>% nuts_params() %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()
n_divergent_ncp_2 <- fit_ncp_2 %>% nuts_params() %>% filter(Parameter == "divergent__" & Value == 1) %>% nrow()
if(n_divergent_cp_2 <= 0) {
stop("No divergences in CP with increased adapt.delta. Change seed?")
}
if(n_divergent_ncp_2 > 0) {
stop("Divergences in the NCP model. Fix a bug / change seed?")
}
## ----mcmc_nuts_divergence-3---------------------------------------------------
mcmc_nuts_divergence(nuts_params(fit_cp_2), log_posterior(fit_cp_2))
mcmc_nuts_divergence(nuts_params(fit_ncp_2), log_posterior(fit_ncp_2))
## ----mcmc_nuts_energy-1, message=FALSE----------------------------------------
color_scheme_set("red")
mcmc_nuts_energy(np_cp)
## ----mcmc_nuts_energy-3, message=FALSE, fig.width=8---------------------------
compare_cp_ncp(
mcmc_nuts_energy(np_cp, binwidth = 1/2),
mcmc_nuts_energy(np_ncp, binwidth = 1/2)
)
## ----mcmc_nuts_energy-4, message=FALSE, fig.width=8--------------------------
np_cp_2 <- nuts_params(fit_cp_2)
np_ncp_2 <- nuts_params(fit_ncp_2)
compare_cp_ncp(
mcmc_nuts_energy(np_cp_2),
mcmc_nuts_energy(np_ncp_2)
)
## ----fit_cp_bad_rhat, results='hide'------------------------------------------
fit_cp_bad_rhat <- sampling(schools_mod_cp, data = schools_dat,
iter = 50, init_r = 10, seed = 671254821)
## ----print-rhats--------------------------------------------------------------
rhats <- rhat(fit_cp_bad_rhat)
print(rhats)
## ----echo=FALSE---------------------------------------------------------------
#Check that the fit we got is a sensible example
if(all(rhats < 1.3)) {
stop("All rhats for the short chain run are low. Change seed?")
}
## ----mcmc_rhat-1--------------------------------------------------------------
color_scheme_set("brightblue") # see help("color_scheme_set")
mcmc_rhat(rhats)
## ----mcmc_rhat-2--------------------------------------------------------------
mcmc_rhat(rhats) + yaxis_text(hjust = 1)
## ----mcmc_rhat-3--------------------------------------------------------------
mcmc_rhat(rhat = rhat(fit_cp)) + yaxis_text(hjust = 0)
## ----print-neff-ratios--------------------------------------------------------
ratios_cp <- neff_ratio(fit_cp)
print(ratios_cp)
mcmc_neff(ratios_cp, size = 2)
## ----mcmc_neff-compare--------------------------------------------------------
neff_cp <- neff_ratio(fit_cp, pars = c("theta", "mu", "tau"))
neff_ncp <- neff_ratio(fit_ncp, pars = c("theta", "mu", "tau"))
compare_cp_ncp(mcmc_neff(neff_cp), mcmc_neff(neff_ncp), ncol = 1)
## ----mcmc_acf, out.width = "70%"----------------------------------------------
compare_cp_ncp(
mcmc_acf(posterior_cp, pars = "theta[1]", lags = 10),
mcmc_acf(posterior_ncp, pars = "eta[1]", lags = 10)
)
|