1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
#' PPC errors
#'
#' Various plots of predictive errors `y - yrep`. See the
#' **Details** and **Plot Descriptions** sections, below.
#'
#' @name PPC-errors
#' @family PPCs
#'
#' @template args-y-yrep
#' @template args-group
#' @template args-facet_args
#' @param x A numeric vector the same length as `y` to use as the x-axis variable.
#' @param ... Currently unused.
#' @param stat A function or a string naming a function for computing the
#' posterior average. In both cases, the function should take a vector input and
#' return a scalar statistic. The function name is displayed in the axis-label.
#' Defaults to `"mean"`.
#' @param size,alpha For scatterplots, arguments passed to
#' [ggplot2::geom_point()] to control the appearance of the points. For the
#' binned error plot, arguments controlling the size of the outline and
#' opacity of the shaded region indicating the 2-SE bounds.
#'
#' @details
#' All of these functions (aside from the `*_scatter_avg` functions)
#' compute and plot predictive errors for each row of the matrix `yrep`, so
#' it is usually a good idea for `yrep` to contain only a small number of
#' draws (rows). See **Examples**, below.
#'
#' For binomial and Bernoulli data the `ppc_error_binned()` function can be used
#' to generate binned error plots. Bernoulli data can be input as a vector of 0s
#' and 1s, whereas for binomial data `y` and `yrep` should contain "success"
#' proportions (not counts). See the **Examples** section, below.
#'
#' @section Plot descriptions:
#' \describe{
#' \item{`ppc_error_hist()`}{
#' A separate histogram is plotted for the predictive errors computed from
#' `y` and each dataset (row) in `yrep`. For this plot `yrep` should have
#' only a small number of rows.
#' }
#' \item{`ppc_error_hist_grouped()`}{
#' Like `ppc_error_hist()`, except errors are computed within levels of a
#' grouping variable. The number of histograms is therefore equal to the
#' product of the number of rows in `yrep` and the number of groups
#' (unique values of `group`).
#' }
#' \item{`ppc_error_scatter()`}{
#' A separate scatterplot is displayed for `y` vs. the predictive errors
#' computed from `y` and each dataset (row) in `yrep`. For this plot `yrep`
#' should have only a small number of rows.
#' }
#' \item{`ppc_error_scatter_avg()`}{
#' A single scatterplot of `y` vs. the average of the errors computed from
#' `y` and each dataset (row) in `yrep`. For each individual data point
#' `y[n]` the average error is the average of the errors for `y[n]` computed
#' over the the draws from the posterior predictive distribution.
#'
#' When the optional `x` argument is provided, the average error is plotted
#' on the y-axis and the predictor variable `x` is plotted on the x-axis.
#' }
#' \item{`ppc_error_scatter_avg_vs_x()`}{
#' Deprecated. Use `ppc_error_scatter_avg(x = x)` instead.
#' }
#' \item{`ppc_error_binned()`}{
#' Intended for use with binomial data. A separate binned error plot (similar
#' to `arm::binnedplot()`) is generated for each dataset (row) in `yrep`. For
#' this plot `y` and `yrep` should contain proportions rather than counts,
#' and `yrep` should have only a small number of rows.
#' }
#' }
#'
#' @template return-ggplot
#'
#' @templateVar bdaRef (Ch. 6)
#' @template reference-bda
#'
#' @examples
#' y <- example_y_data()
#' yrep <- example_yrep_draws()
#' ppc_error_hist(y, yrep[1:3, ])
#'
#' # errors within groups
#' group <- example_group_data()
#' (p1 <- ppc_error_hist_grouped(y, yrep[1:3, ], group))
#' p1 + yaxis_text() # defaults to showing counts on y-axis
#' \donttest{
#' table(group) # more obs in GroupB, can set freq=FALSE to show density on y-axis
#' (p2 <- ppc_error_hist_grouped(y, yrep[1:3, ], group, freq = FALSE))
#' p2 + yaxis_text()
#' }
#'
#' # scatterplots
#' ppc_error_scatter(y, yrep[10:14, ])
#' ppc_error_scatter_avg(y, yrep)
#'
#' x <- example_x_data()
#' ppc_error_scatter_avg(y, yrep, x)
#'
#' \dontrun{
#' # binned error plot with binomial model from rstanarm
#' library(rstanarm)
#' example("example_model", package = "rstanarm")
#' formula(example_model)
#'
#' # get observed proportion of "successes"
#' y <- example_model$y # matrix of "success" and "failure" counts
#' trials <- rowSums(y)
#' y_prop <- y[, 1] / trials # proportions
#'
#' # get predicted success proportions
#' yrep <- posterior_predict(example_model)
#' yrep_prop <- sweep(yrep, 2, trials, "/")
#'
#' ppc_error_binned(y_prop, yrep_prop[1:6, ])
#'
#' # plotting against a covariate on x-axis
#' herd <- as.numeric(example_model$data$herd)
#' ppc_error_binned(y_prop, yrep_prop[1:6, ], x = herd)
#' }
#'
NULL
#' @rdname PPC-errors
#' @export
#' @template args-hist
#' @template args-hist-freq
ppc_error_hist <-
function(y,
yrep,
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE) {
dots <- list(...)
if (!from_grouped(dots)) {
check_ignored_arguments(...)
dots$group <- NULL
}
data <- ppc_error_data(y, yrep, group = dots$group)
ggplot(data, set_hist_aes(freq)) +
geom_histogram(
fill = get_color("l"),
color = get_color("lh"),
linewidth = 0.25,
binwidth = binwidth,
bins = bins,
breaks = breaks
) +
xlab(error_label()) +
bayesplot_theme_get() +
dont_expand_y_axis() +
error_hist_facets(
facet_args,
grouped = FALSE,
ignore = nrow(yrep) == 1
) +
force_axes_in_facets() +
yaxis_title(FALSE) +
yaxis_text(FALSE) +
yaxis_ticks(FALSE) +
facet_text(FALSE)
}
#' @rdname PPC-errors
#' @export
ppc_error_hist_grouped <-
function(y,
yrep,
group,
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE) {
check_ignored_arguments(...)
call <- match.call(expand.dots = FALSE)
g <- eval(ungroup_call("ppc_error_hist", call), parent.frame())
g +
error_hist_facets(facet_args, grouped = TRUE) +
facet_text() +
theme(strip.text.y = element_blank())
}
#' @rdname PPC-errors
#' @export
ppc_error_scatter <-
function(y,
yrep,
...,
facet_args = list(),
size = 2.5,
alpha = 0.8) {
check_ignored_arguments(...)
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
errors <- compute_errors(y, yrep)
ppc_scatter(
y = y,
yrep = errors,
facet_args = facet_args,
size = size,
alpha = alpha,
ref_line = FALSE
) +
labs(x = error_label(), y = y_label())
}
#' @rdname PPC-errors
#' @export
ppc_error_scatter_avg <-
function(y,
yrep,
x = NULL,
...,
stat = "mean",
size = 2.5,
alpha = 0.8) {
check_ignored_arguments(...)
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
if (!missing(x)) {
qx <- enquo(x)
x <- validate_x(x, y)
}
errors <- compute_errors(y, yrep)
stat <- as_tagged_function({{ stat }})
ppc_scatter_avg(
y = if (is_null(x)) y else x,
yrep = errors,
size = size,
alpha = alpha,
ref_line = FALSE,
stat = stat
) +
labs(
x = error_avg_label(stat),
y = if (is_null(x)) y_label() else as_label((qx))
) + if (is_null(x)) {
NULL
} else {
coord_flip()
}
}
#' @rdname PPC-errors
#' @export
ppc_error_scatter_avg_grouped <-
function(y,
yrep,
group,
...,
stat = "mean",
facet_args = list(),
size = 2.5,
alpha = 0.8) {
check_ignored_arguments(...)
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
stat <- as_tagged_function({{ stat }})
errors <- compute_errors(y, yrep)
ppc_scatter_avg_grouped(
y = y,
yrep = errors,
group = group,
size = size,
alpha = alpha,
facet_args = facet_args,
ref_line = FALSE,
stat = stat
) +
labs(x = error_avg_label(stat), y = y_label())
}
#' @rdname PPC-errors
#' @export
ppc_error_scatter_avg_vs_x <- function(
y,
yrep,
x,
...,
stat = "mean",
size = 2.5,
alpha = 0.8
) {
check_ignored_arguments(...)
.Deprecated(new = "ppc_error_scatter_avg(y, yrep, x)")
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
qx <- enquo(x)
x <- validate_x(x, y)
stat <- as_tagged_function({{ stat }})
errors <- compute_errors(y, yrep)
ppc_scatter_avg(
y = x,
yrep = errors,
size = size,
alpha = alpha,
ref_line = FALSE,
stat = stat
) +
labs(
x = error_avg_label(stat),
y = as_label((qx))
) +
coord_flip()
}
#' @rdname PPC-errors
#' @export
#' @param bins For `ppc_error_binned()`, the number of bins to use (approximately).
ppc_error_binned <-
function(y,
yrep,
x = NULL,
...,
facet_args = list(),
bins = NULL,
size = 1,
alpha = 0.25) {
check_ignored_arguments(...)
qx <- enquo(x)
data <- ppc_error_binnned_data(y, yrep, x = x, bins = bins)
facet_layer <- if (nrow(yrep) == 1) {
geom_ignore()
} else {
facet_args[["facets"]] <- "rep_id"
do.call("facet_wrap", facet_args)
}
mixed_scheme <- is_mixed_scheme(color_scheme_get())
point_fill <- get_color(ifelse(mixed_scheme, "m", "d"))
point_color <- get_color(ifelse(mixed_scheme, "mh", "dh"))
ggplot(data, aes(x = .data$ey_bar)) +
hline_0(linetype = 2, color = "black") +
geom_ribbon(
mapping = aes(ymax = .data$se2, ymin = -.data$se2),
fill = get_color("l"),
color = NA,
alpha = alpha
) +
geom_path(
mapping = aes(y = .data$se2),
color = get_color("l"),
linewidth = size
) +
geom_path(
mapping = aes(y = -.data$se2),
color = get_color("l"),
linewidth = size
) +
geom_point(
mapping = aes(y = .data$err_bar),
shape = 21,
fill = point_fill,
color = point_color
) +
labs(
x = if (is.null(x)) "Predicted proportion" else as_label((qx)),
y = "Average Errors \n (with 2SE bounds)"
) +
bayesplot_theme_get() +
facet_layer +
force_axes_in_facets() +
facet_text(FALSE)
}
#' @rdname PPC-errors
#' @export
ppc_error_data <- function(y, yrep, group = NULL) {
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
if (!is.null(group)) {
group <- validate_group(group, length(y))
}
errors <- compute_errors(y, yrep) %>% melt_predictions()
errors <- tibble::add_column(errors, y_obs = y[errors$y_id], .before = "rep_id")
if (!is.null(group)) {
errors <- tibble::add_column(errors, group = group[errors$y_id], .before = "y_id")
}
errors
}
# internal ----------------------------------------------------------------
#' Compute predictive errors `y` - `yrep`
#' @noRd
#' @param y,yrep User's `y` and `yrep` arguments.
#' @return A matrix with the same dimensions as `yrep`
compute_errors <- function(y, yrep) {
suggested_package("rstantools")
rstantools::predictive_error(object = yrep, y = y)
}
#' Create facet layer for PPC error plots
#'
#' The default is to use `scales="fixed"` (which I think makes sense for looking
#' at errors, right?) if not specified in `facet_args`.
#'
#' @param User's `facet_args` argument.
#' @param grouped If `FALSE` then does faceting by `rep_id`, if `TRUE` then both
#' `rep_id` and `group`.
#' @param ignore If `TRUE` then `geom_ignore()` is returned. This is intended to
#' allow turning off facets if there is only one plot to make.
#' @param scales_default What to use for the `scales` argument to `facet_*()` if
#' not specified in `facet_args`.
#' @return Object returned by `facet_wrap()` or `facet_grid()` (unless `ignore=TRUE`).
#' @noRd
error_hist_facets <-
function(facet_args,
grouped = FALSE,
ignore = FALSE,
scales_default = "fixed") {
if (ignore) {
return(geom_ignore())
}
if (grouped) {
facet_fun <- "facet_grid"
facet_args[["rows"]] <- vars(.data$rep_id)
facet_args[["cols"]] <- vars(.data$group)
} else {
facet_fun <- "facet_wrap"
facet_args[["facets"]] <- vars(.data$rep_id)
}
facet_args[["scales"]] <- facet_args[["scales"]] %||% scales_default
do.call(facet_fun, facet_args)
}
error_label <- function() {
expression(italic(y) - italic(y)[rep])
}
error_avg_label <- function(stat = NULL) {
stat <- as_tagged_function({{ stat }}, fallback = "stat")
e <- attr(stat, "tagged_expr")
if (attr(stat, "is_anonymous_function")) {
e <- sym("stat")
}
de <- deparse1(e)
# create some dummy variables to pass the R package check for
# global variables in the expression below
italic <- sym("italic")
y <- sym("y")
expr(paste((!!de))*(italic(y) - italic(y)[rep]))
}
# Data for binned errors plots
ppc_error_binnned_data <- function(y, yrep, x = NULL, bins = NULL) {
y <- validate_y(y)
yrep <- validate_predictions(yrep, length(y))
if (!is.null(x)) {
x <- validate_x(x, y)
}
if (is.null(bins)) {
bins <- n_bins(length(y))
}
errors <- compute_errors(y, yrep)
binned_errs <- list()
for (s in 1:nrow(errors)) {
if (is.null(x)) {
binned_errs[[s]] <-
bin_errors(
ey = yrep[s, ],
r = errors[s, ],
bins = bins,
rep_id = s
)
} else {
binned_errs[[s]] <-
bin_errors(
ey = x,
r = errors[s, ],
bins = bins,
rep_id = s
)
}
}
binned_errs <- dplyr::bind_rows(binned_errs)
tibble::as_tibble(binned_errs)
}
# calculate number of bins binned_error_data()
# @parmam N Number of data points, length(y)
n_bins <- function(N) {
if (N <= 10) {
return(floor(N / 2))
} else if (N > 10 && N < 100) {
return(10)
} else { # N >= 100
return(floor(sqrt(N)))
}
}
bin_errors <- function(ey, r, bins, rep_id = NULL) {
N <- length(ey)
break_ids <- floor(N * (1:(bins - 1)) / bins)
if (any(break_ids == 0)) {
bins <- 1
}
if (bins == 1) {
breaks <- c(-Inf, sum(range(ey)) / 2, Inf)
} else {
ey_sort <- sort(ey)
breaks <- -Inf
for (i in 1:(bins - 1)) {
break_i <- break_ids[i]
ey_range <- ey_sort[c(break_i, break_i + 1)]
if (diff(ey_range) == 0) {
if (ey_range[1] == min(ey)) {
ey_range[1] <- -Inf
} else {
ey_range[1] <- max(ey[ey < ey_range[1]])
}
}
breaks <- c(breaks, sum(ey_range) / 2)
}
breaks <- unique(c(breaks, Inf))
}
ey_binned <- as.numeric(cut(ey, breaks))
bins <- length(breaks) - 1
out <- matrix(NA, nrow = bins, ncol = 4)
colnames(out) <- c("ey_bar", "err_bar", "se2", "bin")
for (i in 1:bins) {
mark <- which(ey_binned == i)
ey_bar <- mean(ey[mark])
r_bar <- mean(r[mark])
s <- if (length(r[mark]) > 1) sd(r[mark]) else 0
out[i, ] <- c(ey_bar, r_bar, 2 * s / sqrt(length(mark)), i)
}
out <- as.data.frame(out)
if (!is.null(rep_id)) {
out$rep_id <- as.integer(rep_id)
}
return(out)
}
|