1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# Copyright (C) 2012 - 2024 Reza Mohammadi |
# |
# This file is part of BDgraph package. |
# |
# BDgraph is free software: you can redistribute it and/or modify it under |
# the terms of the GNU General Public License as published by the Free |
# Software Foundation; see <https://cran.r-project.org/web/licenses/GPL-3>.|
# |
# Maintainer: Reza Mohammadi <a.mohammadi@uva.nl> |
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# BDMCMC algorithm for graphical models based on Discrete Weibull |
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
get_bounds_dw = function( data, q, beta, pii, n, p, zero = TRUE )
{
lower_bounds = matrix( 0, nrow = n, ncol = p )
upper_bounds = matrix( 0, nrow = n, ncol = p )
if( is.vector(beta) & is.vector(pii))
{
for ( j in 1:p )
{
for( r in sort( unique( data[ , j ] ) ) )
{
ir = ( 1:n )[ data[ , j ] == r & !is.na( data[ , j ] ) ]
pdw_lb = BDgraph::pdweibull( r - 1, q = q[ j ], beta = beta[ j ], zero = zero )
pdw_ub = BDgraph::pdweibull( r , q = q[ j ], beta = beta[ j ], zero = zero )
lower_bounds[ ir, j ] = stats::qnorm( ( 1 - pii[ j ] ) * ( r != 0 ) + pii[ j ] * pdw_lb )
upper_bounds[ ir, j ] = stats::qnorm( ( 1 - pii[ j ] ) + pii[ j ] * pdw_ub )
}
}
}
if(is.matrix(beta) & is.vector(pii))
{
for(j in 1:p)
{
for(r in sort(unique(data[, j])))
{
ir = (1:n)[data[, j] == r & !is.na(data[, j])]
pdw_lb = BDgraph::pdweibull(r - 1, q = q[ir, j], beta = beta[ir, j], zero = zero)
pdw_ub = BDgraph::pdweibull(r , q = q[ir, j], beta = beta[ir, j], zero = zero)
lower_bounds[ir, j] = stats::qnorm((1 - pii[j]) * (r != 0) + pii[j] * pdw_lb)
upper_bounds[ir, j] = stats::qnorm((1 - pii[j]) + pii[j] * pdw_ub)
}
}
}
if(is.matrix(beta) & is.matrix(pii))
{
for(j in 1:p)
{
for(r in sort(unique(data[, j])))
{
ir = (1:n)[data[, j] == r & !is.na(data[, j])]
pdw_lb = BDgraph::pdweibull(r - 1, q = q[ir, j], beta = beta[ir, j], zero = zero)
pdw_ub = BDgraph::pdweibull(r , q = q[ir, j], beta = beta[ir, j], zero = zero)
lower_bounds[ir, j] = stats::qnorm((1 - pii[ir, j]) * (r != 0) + pii[ir, j] * pdw_lb)
upper_bounds[ir, j] = stats::qnorm((1 - pii[ir, j]) + pii[ir, j] * pdw_ub)
}
}
}
lower_bounds [ lower_bounds == -Inf ] = - .Machine $ double.xmax
upper_bounds [ upper_bounds == Inf ] = .Machine $ double.xmax
lower_bounds [ lower_bounds == Inf ] = .Machine $ double.xmax
upper_bounds [ upper_bounds == -Inf ] = - .Machine $ double.xmax
return( list( lower_bounds = lower_bounds, upper_bounds = upper_bounds ) )
}
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
bdgraph.dw = function( data, x = NULL, formula = y ~ .,
n = NULL, algorithm = "bdmcmc", iter = 5000,
burnin = iter / 2, g.prior = 0.2, df.prior = 3,
ZI = FALSE, iter_bdw = 5000,
g.start = "empty",jump = NULL, save = FALSE,
q = NULL, beta = NULL, pii = NULL,
cores = NULL, threshold = 1e-8, verbose = TRUE )
{
if( is.matrix( data ) | is.data.frame( data ) )
if( any( data < 0 ) )
stop( "'data' should not have negative values" )
if( df.prior < 3 ) stop( "'prior.df' must be >= 3" )
if( iter < burnin ) stop( "'iter' must be higher than 'burnin'" )
burnin = floor( burnin )
if( is.numeric( verbose ) )
{
if( ( verbose < 1 ) | ( verbose > 100 ) )
stop( "'verbose' (for numeric case) must be between ( 1, 100 )" )
trace_mcmc = floor( verbose )
verbose = TRUE
}else{
trace_mcmc = ifelse( verbose == TRUE, 10, iter + 1000 )
}
list_S_n_p = BDgraph::get_S_n_p( data = data, method = "dw", n = n, not.cont = NULL )
S = list_S_n_p $ S
n = list_S_n_p $ n
p = list_S_n_p $ p
method = list_S_n_p $ method
colnames_data = list_S_n_p $ colnames_data
if( ( is.null( cores ) ) & ( p < 16 ) )
cores = 1
cores = BDgraph::get_cores( cores = cores, verbose = verbose )
not.cont = list_S_n_p $ not.cont
Z = list_S_n_p $ Z
data = list_S_n_p $ data
gcgm_NA = list_S_n_p $ gcgm_NA
sample_marginals = NULL
if( is.null( q ) ) if( inherits( data, "sim" ) ) q = data $ q
if( is.null( beta ) ) if( inherits( data, "sim" ) ) beta = data $ beta
if( is.null( pii ) ) pii = rep( 1, p )
if( is.null( q ) & is.null( beta ) )
{
if( length( ZI ) == 1 ) ZI = rep( ZI, p )
if( length( ZI ) != p ) stop( "'ZI', as a vector, must be of length equal to the number of variables, 'ncol( data )'" )
if( is.null( x ) )
{
q = NULL
beta = NULL
pii = NULL
sample_marginals = vector( "list", p )
cat( paste( c( " MCMC sampling of DW regression parameters ... in progress: \n" ), collapse = "" ) )
for( j in 1 : p )
{
cat( paste( c(" Marginal regression for node ", j, " " ), collapse = "" ) , "\r" )
xy_j = data.frame( y = data[ , j ] )
est_qbeta = BDgraph::bdw.reg( data = xy_j, formula = formula, ZI = ZI[ j ], iter = iter_bdw )
q[ j ] = est_qbeta $ q.est
beta[ j ] = est_qbeta $ beta.est
pii[ j ] = est_qbeta $ pi.est
sample_marginals[[ j ]] = est_qbeta $ sample
}
}
if( !is.null( x ) )
{
q = data * 0
beta = data * 0
pii = vector( length = p )
sample_marginals = vector( "list", p )
cat( paste( c( " MCMC sampling of DW regression parameters... in progress: \n" ), collapse = "" ) )
for( j in 1 : p )
{
cat( paste( c(" Marginal regression for node ", j," " ), collapse = "" ) , "\r" )
xy_j = data.frame( x, y = data[ , j ] )
est_qbeta = BDgraph::bdw.reg( data = xy_j, formula = formula, ZI = ZI[ j ], iter = iter_bdw)
q[ , j ] = est_qbeta $ q.est
beta[ , j ] = est_qbeta $ beta.est
pii[ j ] = est_qbeta $ pi.est
sample_marginals[[ j ]] = est_qbeta $ sample
}
}
}
b = df.prior
b_star = b + n
D = diag( p )
Ds = D + S
Ts = chol( solve( Ds ) )
Ti = chol( solve( D ) ) # only for double Metropolis-Hastings algorithms
g_prior = BDgraph::get_g_prior( g.prior = g.prior, p = p )
G = BDgraph::get_g_start( g.start = g.start, g_prior = g_prior, p = p )
K = BDgraph::get_K_start( G = G, g.start = g.start, Ts = Ts, b_star = b_star, threshold = threshold )
if( save == TRUE )
{
qp1 = ( p * ( p - 1 ) / 2 ) + 1
string_g = paste( c( rep( 0, qp1 ) ), collapse = '' )
sample_graphs = c( rep ( string_g, iter - burnin ) ) # vector of numbers like "10100"
graph_weights = c( rep ( 0, iter - burnin ) ) # waiting time for every state
all_graphs = c( rep ( 0, iter - burnin ) ) # vector of numbers like "10100"
all_weights = c( rep ( 1, iter - burnin ) ) # waiting time for every state
size_sample_g = 0
}else{
p_links = matrix( 0, p, p )
}
if( ( verbose == TRUE ) && ( save == TRUE ) && ( p > 50 & iter > 20000 ) )
{
cat( " WARNING: Memory needed to run this function is around " )
print( ( iter - burnin ) * utils::object.size( string_g ), units = "auto" )
}
K_hat = matrix( 0, p, p )
last_graph = K_hat
last_K = K_hat
if( ( is.null( jump ) ) && ( p > 10 & iter > ( 5000 / p ) ) )
jump = floor( p / 10 )
if( is.null( jump ) ) jump = 1
if( ( p < 10 ) && ( jump > 1 ) ) cat( " WARNING: the value of jump should be 1 " )
if( jump > min( p, sqrt( p * 11 ) ) ) cat( " WARNING: the value of jump should be smaller " )
if( verbose == TRUE )
cat( paste( c( iter, " MCMC sampling ... in progress: \n" ), collapse = "" ) )
bounds = BDgraph::get_bounds_dw( data = data, q = q, beta = beta, pii = pii, n = n, p = p )
lower_bounds = bounds $ lower_bounds
upper_bounds = bounds $ upper_bounds
# - - main BDMCMC algorithms implemented in C++ - - - - - - - - - - - - - |
if( save == TRUE )
{
if( ( algorithm == "bdmcmc" ) && ( jump == 1 ) )
{
result = .C( "gcgm_dw_bdmcmc_map", as.integer(iter), as.integer(burnin), G = as.integer(G), as.double(g_prior), as.double(Ts),
K = as.double(K), as.integer(p), as.double(threshold),
as.double(Z), as.integer(data), as.double(lower_bounds), as.double(upper_bounds), as.integer(n), as.integer(gcgm_NA),
all_graphs = as.integer(all_graphs), all_weights = as.double(all_weights), K_hat = as.double(K_hat),
sample_graphs = as.character(sample_graphs), graph_weights = as.double(graph_weights), size_sample_g = as.integer(size_sample_g),
as.integer(b), as.integer(b_star), as.double(D), as.double(Ds), as.integer(trace_mcmc), PACKAGE = "BDgraph" )
}
if( ( algorithm == "bdmcmc" ) && ( jump != 1 ) )
{
counter_all_g = 0
result = .C( "gcgm_dw_bdmcmc_map_multi_update", as.integer(iter), as.integer(burnin), G = as.integer(G), as.double(g_prior), as.double(Ts), K = as.double(K), as.integer(p), as.double(threshold),
as.double(Z), as.integer(data), as.double(lower_bounds), as.double(upper_bounds), as.integer(n), as.integer(gcgm_NA),
all_graphs = as.integer(all_graphs), all_weights = as.double(all_weights), K_hat = as.double(K_hat),
sample_graphs = as.character(sample_graphs), graph_weights = as.double(graph_weights), size_sample_g = as.integer(size_sample_g), counter_all_g = as.integer(counter_all_g),
as.integer(b), as.integer(b_star), as.double(D), as.double(Ds), as.integer(jump), as.integer(trace_mcmc), PACKAGE = "BDgraph" )
}
}else{
if( ( algorithm == "bdmcmc" ) && ( jump == 1 ) )
{
result = .C( "gcgm_dw_bdmcmc_ma", as.integer(iter), as.integer(burnin), G = as.integer(G), as.double(g_prior), as.double(Ts), K = as.double(K), as.integer(p), as.double(threshold),
as.double(Z), as.integer(data), as.double(lower_bounds), as.double(upper_bounds), as.integer(n), as.integer(gcgm_NA),
K_hat = as.double(K_hat), p_links = as.double(p_links),
as.integer(b), as.integer(b_star), as.double(D), as.double(Ds), as.integer(trace_mcmc), PACKAGE = "BDgraph" )
}
if( ( algorithm == "bdmcmc" ) && ( jump != 1 ) )
{
result = .C( "gcgm_dw_bdmcmc_ma_multi_update", as.integer(iter), as.integer(burnin), G = as.integer(G), as.double(g_prior), as.double(Ts), K = as.double(K), as.integer(p), as.double(threshold),
as.double(Z), as.integer(data), as.double(lower_bounds), as.double(upper_bounds), as.integer(n), as.integer(gcgm_NA),
K_hat = as.double(K_hat), p_links = as.double(p_links),
as.integer(b), as.integer(b_star), as.double(D), as.double(Ds), as.integer(jump), as.integer(trace_mcmc), PACKAGE = "BDgraph" )
}
}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|
K_hat = matrix( result $ K_hat, p, p, dimnames = list( colnames_data, colnames_data ) )
last_graph = matrix( result $ G , p, p, dimnames = list( colnames_data, colnames_data ) )
last_K = matrix( result $ K , p, p )
if( save == TRUE )
{
if( algorithm == "rjmcmc" ) K_hat = K_hat / ( iter - burnin )
size_sample_g = result $ size_sample_g
sample_graphs = result $ sample_graphs[ 1 : size_sample_g ]
graph_weights = result $ graph_weights[ 1 : size_sample_g ]
all_graphs = result $ all_graphs + 1
all_weights = result $ all_weights
if( ( algorithm != "rjmcmc" ) & ( jump != 1 ) )
{
all_weights = all_weights[ 1 : ( result $ counter_all_g ) ]
all_graphs = all_graphs[ 1 : ( result $ counter_all_g ) ]
}
output = list( sample_graphs = sample_graphs, graph_weights = graph_weights, K_hat = K_hat,
all_graphs = all_graphs, all_weights = all_weights, last_graph = last_graph, last_K = last_K,
q.est = q, beta.est = beta, pi.est = pii,
data = data, method = "dw" )
}else{
p_links = matrix( result $ p_links, p, p, dimnames = list( colnames_data, colnames_data ) )
if( ( algorithm == "rjmcmc" ) | ( algorithm == "rj-dmh" ) )
{
p_links = p_links / ( iter - burnin )
K_hat = K_hat / ( iter - burnin )
}
p_links[ lower.tri( p_links ) ] = 0
output = list( p_links = p_links, K_hat = K_hat, last_graph = last_graph, last_K = last_K,
q.est = q, beta.est = beta, pi.est = pii,
data = data, method = "dw" )
}
if( !is.null( sample_marginals ) )
output $ sample_marginals = sample_marginals
class( output ) = "bdgraph"
return( output )
}
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|