1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# Copyright (C) 2012 - 2023 Reza Mohammadi |
# |
# This file is part of BDgraph package. |
# |
# BDgraph is free software: you can redistribute it and/or modify it under |
# the terms of the GNU General Public License as published by the Free |
# Software Foundation; see <https://cran.r-project.org/web/licenses/GPL-3>.|
# |
# Maintainer: Reza Mohammadi <a.mohammadi@uva.nl> |
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# Bayesian parameter estimation for discrete Weibull regression
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
bdw.reg = function( data, formula = NA, iter = 5000, burnin = NULL,
dist.q = dnorm, dist.beta = dnorm,
par.q = c( 0, 1 ), par.beta = c( 0, 1 ), par.pi = c( 1, 1 ),
initial.q = NULL, initial.beta = NULL, initial.pi = NULL,
ZI = FALSE, scale.proposal = NULL, adapt = TRUE, print = TRUE )
{
if( is.null( burnin ) ) burnin = round( iter * 0.75 )
if( !is.vector( data ) )
{
mf = stats::model.frame( formula, data = data )
y = stats::model.response( mf, "numeric" )
# x = as.matrix( mf )
# x[ , 1 ] = 1
x = stats::model.matrix(formula, data = data)
}else{
y = data
x = matrix( 1, ncol = 1, nrow = length( y ) )
}
n = length( y )
ncol_x = ncol( x )
ind_y0 = ifelse( y == 0, 1, 0 )
#setting initial parameters
if( is.null( initial.q ) )
{
theta.q = rep( 0, times = ncol_x )
q = 1 - sum( y == 0 ) / n
if( q == 1 ) q = 0.999
theta.q[ 1 ] = log( q / ( 1 - q ) )
}else{
theta.q = initial.q
}
if( is.null( initial.beta ) )
{
theta.beta = rep( 0, times = ncol_x )
}else{
theta.beta = initial.beta
}
if( is.null( scale.proposal ) ) scale.proposal = 2.38 ^ 2 / ( 2 * ncol_x )
if( !ZI ){
pii = 1
z = rep( 1, n )
}else{
pii = ifelse( is.null( initial.pi ), sum( y != 0 ) / n + sum( y == 0 ) / ( n * 2 ), initial.pi )
# z = ifelse( y == 0, 0, 1 )
prob_z = ifelse( y != 0, 1, pii )
z = stats::rbinom( n = n, size = 1, prob = prob_z )
}
fit = stats::optim( par = c( theta.q, theta.beta ),
fn = BDgraph::log_post_cond_dw,
x = x, y = y, z = z, dist.q = dist.q, par.q = par.q, dist.beta = dist.beta, par.beta = par.beta,
control = list( "fnscale" = -1, maxit = 10000 ), hessian = TRUE )
#Initial values: initial posterior mode
theta.q = fit $ par[ 1 : ncol_x ]
theta.beta = fit $ par[ ( ncol_x + 1 ) : ( 2 * ncol_x ) ]
para = c( theta.q, theta.beta )
if( ZI ) para = c( para, pii )
#Setting the covariance matrix of the proposal distribution for the regression coefficients
fisher_info_inv = BDgraph::near_positive_definite( -fit $ hessian[ 1 : ( 2 * ncol_x ), 1 : ( 2 * ncol_x ) ] )
if( !isSymmetric( fisher_info_inv ) || isTRUE( class( try( solve( fisher_info_inv ), silent = TRUE ) ) == "try-error" ) )
{
# sigma_proposal = diag( 0.5, length( para ) )
sigma_proposal = diag( 0.5, 2 * ncol_x )
}else{
fisher_info = solve( fisher_info_inv )
sigma_proposal = scale.proposal * fisher_info
}
sample = matrix( nrow = iter + 1, ncol = length( para ) )
sample[ 1, ] = para
count_accept = 0
for( i_mcmc in 1:iter )
{
if( ( print == TRUE ) && ( i_mcmc %% round( iter / 100 ) == 0 ) )
{
info = paste( round( i_mcmc / iter * 100 ), '% done, Acceptance rate = ',
round( count_accept / iter * 100, 2 ),'%' )
cat( '\r ', info, rep( ' ', 20 ) )
}
theta.q = sample[ i_mcmc, 1 : ncol_x ]
theta.beta = sample[ i_mcmc, ( ncol_x + 1 ) : ( 2 * ncol_x ) ]
if( ZI )
{
pii = sample[ i_mcmc, ncol( sample ) ]
dens = BDgraph::ddweibull_reg( x, y, theta.q, theta.beta )
prob_z0 = ind_y0 * ( 1 - pii )
prob_z1 = dens * pii
prob_z = prob_z1 / ( prob_z1 + prob_z0 )
prob_z[ is.na( prob_z ) ] = 1
#Gibbs sampling for z: sample from posterior distribution given current values of theta.q and theta.beta
z = stats::rbinom( n = n, size = 1, prob = prob_z )
#Gibbs sampling pi: sample from z
n_z0 = sum( z == 0 )
n_z1 = sum( z == 1 )
### Sample new pi from posterior distribution
pii = stats::rbeta( n = 1, shape1 = par.pi[ 1 ] + n_z1, shape2 = par.pi[ 2 ] + n_z0 )
}
#Random Metropolis-Hasting for theta.q and theta.beta (given Z and pi)
#Log-posterior at current parameters
log_posterior_t = BDgraph::log_post_cond_dw( par = c( theta.q, theta.beta ), par.q = par.q, par.beta = par.beta,
dist.q = dist.q, dist.beta = dist.beta, x = x, y = y, z = z )
#Adaptive MH
if( adapt )
if( i_mcmc >= 100 && i_mcmc %% 100 == 0 )
sigma_proposal = BDgraph::near_positive_definite( stats::cov( sample[ ( i_mcmc - 99 ) : i_mcmc, 1 : ( 2 * ncol_x ) ] ) )
if( !isSymmetric( sigma_proposal ) || isTRUE( class( try( chol.default( sigma_proposal ), silent = TRUE ) ) == "try-error" ) )
sigma_proposal = diag( 0.5, ncol( fisher_info ) )
b1 = BDgraph::rmvnorm( n = 1, mean = rep( 0, 2 * ncol_x ), sigma = sigma_proposal )
#New proposed values of theta.q and theta.beta
value_proposal = sample[ i_mcmc, 1 : ( 2 * ncol_x ) ] + as.vector( b1 )
#Log-posterior at proposed parameters (given the same Z and pi)
log_posterior_proposal = BDgraph::log_post_cond_dw( par = value_proposal,
par.q = par.q, par.beta = par.beta,
dist.q = dist.q, dist.beta = dist.beta,
x = x, y = y, z = z )
log_alpha = min( 0, log_posterior_proposal - log_posterior_t )
if( log( stats::runif( 1 ) ) <= log_alpha )
{
sample[ i_mcmc + 1, 1 : ( 2 * ncol_x ) ] = value_proposal
count_accept = count_accept + 1
}else
sample[ i_mcmc + 1, 1 : ( 2 * ncol_x ) ] = sample[ i_mcmc, 1 : ( 2 * ncol_x ) ]
if( ZI )
sample[ i_mcmc + 1, ncol( sample ) ] = pii
}
cat( "\n" )
sample = sample[ ( burnin + 1 ) : ( iter + 1 ), ]
sample.mean = apply( sample, 2, mean )
theta.q = sample.mean[ 1 : ncol_x ]
theta.beta = sample.mean[ ( ncol_x + 1 ) : ( 2 * ncol_x ) ]
if( ZI )
pii = sample.mean[ 2 * ncol_x + 1 ]
q_reg = 1 / ( 1 + exp( - x %*% theta.q ) )
beta_reg = exp( x %*% theta.beta )
if( ncol_x == 1 )
{
q_reg = q_reg[ 1 ]
beta_reg = beta_reg[ 1 ]
}
return( list( sample = sample, q.est = q_reg, beta.est = beta_reg,
pi.est = pii, accept.rate = count_accept / iter ) )
}
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# Discrete Weibull density based on regression
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
ddweibull_reg = function( x, y, theta.q, theta.beta )
{
q_reg = 1 / ( 1 + exp( - x %*% theta.q ) )
beta_reg = exp( x %*% theta.beta )
density = q_reg ^ ( y ^ beta_reg ) - q_reg ^ ( ( y + 1 ) ^ beta_reg )
return( density )
}
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
## Posterior of q and beta given Y & Z: P( X, Y | Z ) P( Z ) P( q ) P( beta )
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
log_post_cond_dw = function( par, x, y, z, dist.q, par.q, dist.beta, par.beta )
{
ncol_x = ncol( x )
theta.q = par[ 1 : ncol_x ]
theta.beta = par[ ( ncol_x + 1 ) : ( 2 * ncol( x ) ) ]
dens_dw_z1 = BDgraph::ddweibull_reg( x = as.matrix( x[ z == 1, ] ), y = y[ z == 1 ],
theta.q = theta.q, theta.beta = theta.beta )
# log_lik = sum( log( dens_dw_z1[ dens_dw_z1 != 0 ] ) )
dens_dw_z1[ dens_dw_z1 == 0 ] = .Machine $ double.xmin
log_lik = sum( log( dens_dw_z1 ) )
log_prior_q = sum( dist.q( theta.q, par.q[ 1 ], par.q[ 2 ], log = TRUE ) )
log_prior_b = sum( dist.beta( theta.beta, par.beta[ 1 ], par.beta[ 2 ], log = TRUE ) )
log_post = log_lik + log_prior_q + log_prior_b
return( log_post )
}
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
near_positive_definite = function( m )
{
# Copyright 2003-05 Korbinian Strimmer
# Rank, condition, and positive definiteness of a matrix; Method by Higham 1988
d = ncol( m )
eigen_m = eigen( m )
eigen_vectors = eigen_m $ vectors
eigen_values = eigen_m $ values
delta = 2 * d * max( abs( eigen_values ) ) * .Machine $ double.eps
# factor two is just to make sure the resulting
# matrix passes all numerical tests of positive definiteness
tau = pmax( 0, delta - eigen_values )
dm = eigen_vectors %*% diag( tau, d ) %*% t( eigen_vectors )
return( m + dm )
}
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|