File: hill_climb_binary.R

package info (click to toggle)
r-cran-bdgraph 2.73%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,344 kB
  • sloc: cpp: 8,160; ansic: 157; makefile: 5
file content (251 lines) | stat: -rwxr-xr-x 9,536 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#     Copyright (C) 2012 - 2022  Reza Mohammadi                                |
#                                                                              |
#     This file is part of BDgraph package.                                    |
#                                                                              |
#     BDgraph is free software: you can redistribute it and/or modify it under |
#     the terms of the GNU General Public License as published by the Free     |
#     Software Foundation; see <https://cran.r-project.org/web/licenses/GPL-3>.|
#                                                                              |
#     Maintainer: Reza Mohammadi <a.mohammadi@uva.nl>                          |
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#     A divide-and-conquer type greedy hill climb algorithm                   
#     for undirected graphcial models with dicrete data                       
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#     The Hill-Climb algorithm ( function "hill_climb_mpl" ) consists for two part:      
#     PART 1: Local Marginal Pseudo-likelihood optimization to discovers the Markov  
#             blanket of each node ( function "local_mb_hc" ).                         
#     PART 2: Neighborhood search algorithm for global Marginal Pseudo-likelihood   
#             optimization  ( function "global_hc" ).                             
#     See "Marginal pseudo-likelihood learning of Markov network structures" by 
#     Pensar et al. for more details.                                              
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#     INPUT:  * data (n x p) matrix, as a count dataset with n observations and p variables.  
#               The outcome space of each variable must be in the form 0, 1, ..., r.   
#             * alpha: The parameter of the prior distribution                      
#     OUTPUT: * selected_G - adjacency matrix for the selected graph        
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |

hill_climb_mpl_binary = function( data, freq_data, n, alpha = 0.5, operator = "or" )
{
	p = ncol( data )
	G = matrix( 0, p, p )
		
	for( i in 1:p )
	{
		mes = paste( c( " PART 1: Local search for node ", i ), collapse = "" )
		cat( mes, "\r" )
		utils::flush.console()	
		
		mb_i       = local_mb_hc_binary( node = i, data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
		G[mb_i, i] = 1
    }

    G_local = matrix( 0, p, p )
    if( operator == "or" )  G_local[ ( G + t( G ) ) > 0 ] = 1
    if( operator == "and" ) G_local = G * t( G )
  
    if( sum( G_local ) != 0 )
    {
       selected_G = global_hc_binary( G_local = G_local, data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )   
    }else{
		selected_G = G_local
    }
    
    return( selected_G )
}
   
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#    Local Marginal Pseudo-likelihood optimization to discovers the Markov 
#    blanket of each node
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
local_mb_hc_binary = function( node, data, freq_data, p, n, alpha = 0.5 )
{
	temp            = seq_len( p )
	mb_potential    = temp[ - node ]	
	l_mb_potential  = p - 1
	mb_hat          = numeric()
	log_prob_mb_hat = log_mpl_binary( node, mb_hat, data, freq_data, p, n, alpha = alpha )	
	cont            = TRUE
	
	while( cont == TRUE )
	{
		cont = FALSE
		log_prob_mb_candidates = numeric( l_mb_potential ) 
		
		for( i in seq_len( l_mb_potential ) )
			log_prob_mb_candidates[i] = log_mpl_binary( node = node, mb_node = c( mb_hat, mb_potential[i] ), data = data, freq_data = freq_data, p = p, n = p, alpha = alpha )			
		
		log_prob_mb_candidate_top = max( log_prob_mb_candidates )
		
		if( log_prob_mb_candidate_top > log_prob_mb_hat )
		{
			mb_cand_top_loc = which.max( log_prob_mb_candidates )
			mb_hat          = c( mb_hat, mb_potential[ mb_cand_top_loc ] )
			mb_potential    = mb_potential[ - mb_cand_top_loc ]
			l_mb_potential  = l_mb_potential - 1
			log_prob_mb_hat = log_prob_mb_candidate_top
			cont            = TRUE
		}
		
		length_mb_hat = length( mb_hat )
		if( ( length_mb_hat > 2 ) & ( cont == TRUE ) )
		{
			delete = TRUE
			while( delete == TRUE )
			{
				delete = FALSE
				log_prob_mb_candidates = numeric( length_mb_hat )
				for( i in 1:length_mb_hat )
					log_prob_mb_candidates[i] = log_mpl_binary( node = node, mb_node = mb_hat[ -i ], data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
				
				log_prob_mb_candidate_top = max( log_prob_mb_candidates )
				
				if( log_prob_mb_candidate_top > log_prob_mb_hat )
				{
					mb_cand_top_loc = which.max( log_prob_mb_candidates )
					mb_hat          = mb_hat[ - mb_cand_top_loc ]
					length_mb_hat   = length( mb_hat )
					log_prob_mb_hat = log_prob_mb_candidate_top
					if( length_mb_hat > 2 ) delete = TRUE
				}
			}
		}
	}
	
	return( mb_hat )
}
   
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# Neighborhood search algorithm for global Marginal Pseudo-likelihood optimization 
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
global_hc_binary = function( G_local, data, freq_data, p, n, alpha = 0.5 )
{
	print( "PART 2, running global search algorithm" )

	ug          = matrix( 0, p, p )
	n_edges     = sum( G_local ) / 2
	temp        = which( G_local == 1, arr.ind = T )
	edges       = temp[temp[, 1] < temp[, 2], ]
	curr_scores = numeric( p )
	
	for( i in 1:p )
		curr_scores[i] = log_mpl_binary( node = i, which( ug[i, ] == 1 ), data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
	
	edge_change_imp = matrix( 0, n_edges, 2 )
	edge_change     = matrix( TRUE, n_edges, 2 )
	
	cont = TRUE
	while( cont == TRUE )
	{
		cont = FALSE
		edge_change_ind = which( edge_change[, 1] == TRUE )
		
		for( i in 1:length( edge_change_ind ) ) 
		{
			edge = edges[edge_change_ind[i], ]
			node = edge[1]			
			mb   = which( ug[node, ] == 1 )			
			
			if( ug[ edge[1], edge[2] ] == 0 )
			{
				swoe1 = curr_scores[node]
				mb    = c( mb, edge[2] )
				swe1  = log_mpl_binary( node = node, mb, data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
				
				edge_change_imp[edge_change_ind[i], 1] = swe1 - swoe1;
				edge_change[edge_change_ind[i], 1] = FALSE
			}else{
				swe1  = curr_scores[node]
				mb    = mb[ mb != edge[2] ]
				swoe1 = log_mpl_binary( node = node, mb, data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
				
				edge_change_imp[edge_change_ind[i], 1] = swoe1 - swe1;
				edge_change[edge_change_ind[i], 1] = FALSE				
			}			
		}
		
		edge_change_ind = which( edge_change[, 2] == 1 )
		for( i in 1:length( edge_change_ind ) ) 
		{
			edge = edges[edge_change_ind[i], ]
			node = edge[2]
			mb   = which( ug[node, ] == 1 )
			
			if( ug[edge[1], edge[2]] == 0 )
			{
				swoe2 = curr_scores[node]
				mb    = c( mb, edge[1] )
				swe2  = log_mpl_binary( node = node, mb, data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
				
				edge_change_imp[edge_change_ind[i], 2] = swe2 - swoe2;
				edge_change[edge_change_ind[i], 2] = FALSE
			}else{
				swe2  = curr_scores[node]
				mb    = mb[mb  != edge[1]]
				swoe2 = log_mpl_binary( node = node, mb, data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
				
				edge_change_imp[edge_change_ind[i], 2] = swoe2 - swe2;
				edge_change[edge_change_ind[i], 2] = FALSE				
			}			
		}
		
		imp         = apply( edge_change_imp, 1, sum )
		max_imp     = max( imp )
		max_imp_loc = which.max( imp )		
		
		if( max_imp > 0 )
		{
			edge = edges[max_imp_loc, ]
			if( ug[edge[1], edge[2]] == 0 )
			{
				ug[edge[1], edge[2]] = 1
				ug[edge[2], edge[1]] = 1
			}else{
				ug[edge[1], edge[2]] = 0
				ug[edge[2], edge[1]] = 0				
			}
			
			curr_scores[edge[1]] = log_mpl_binary( node = edge[1], which( ug[edge[1], ] == 1 ), data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
			curr_scores[edge[2]] = log_mpl_binary( node = edge[2], which( ug[edge[2], ] == 1 ), data = data, freq_data = freq_data, p = p, n = n, alpha = alpha )
			
			edge_change[edges[, 1] == edge[1]|edges[, 1] == edge[2], 1] = TRUE
			edge_change[edges[, 2] == edge[1]|edges[, 2] == edge[2], 2] = TRUE
			
			cont = TRUE
		}	
	}	
	
	return( ug )
}
    
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
# Computing the Marginal pseudo-likelihood for count data 
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
log_mpl_binary = function( node, mb_node, data, freq_data, p, n, alpha = 0.5 )
{
	mb_node          = as.vector( mb_node )
	alpha_ijl        = alpha
	length_freq_data = length( freq_data )
	size_node        = length( mb_node )
	node             = node - 1
	mb_node          = mb_node - 1
	log_mpl_node     = 0.0

	result = .C( "log_mpl_binary_parallel_hc", as.integer(node), as.integer(mb_node), as.integer(size_node), 
	            log_mpl_node = as.double(log_mpl_node), as.integer(data), as.integer(freq_data), 
	            as.integer(length_freq_data), as.double(alpha_ijl), 
	            as.integer(n), PACKAGE = "BDgraph" )
	
	log_mpl_node = result $ log_mpl_node
	
	return( log_mpl_node )
}
     
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |