File: posterior.predict.R

package info (click to toggle)
r-cran-bdgraph 2.73%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,344 kB
  • sloc: cpp: 8,160; ansic: 157; makefile: 5
file content (157 lines) | stat: -rwxr-xr-x 4,992 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#     Copyright (C) 2012 - 2022  Reza Mohammadi                                |
#                                                                              |
#     This file is part of BDgraph package.                                    |
#                                                                              |
#     BDgraph is free software: you can redistribute it and/or modify it under |
#     the terms of the GNU General Public License as published by the Free     |
#     Software Foundation; see <https://cran.r-project.org/web/licenses/GPL-3>.|
#                                                                              |
#     Maintainer: Reza Mohammadi <a.mohammadi@uva.nl>                          |
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
#    posterior predict function for "bdgraph" object                           |
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |

posterior.predict = function( object, iter = 1, ... )
{
    if( is.null( object $ all_graphs ) ) 
        stop( "'bdgraph.obj' must be an object of function 'bdgraph()' or 'ssgraph()' with option 'save = TRUE'" )
    
    method = object $ method
    data   = object $ data
    
    n_data = nrow( data )
    p      = ncol( data )

	if( isSymmetric( data ) )
	{
		S = data
	}else{
 		S = t( data ) %*% data
	}

	sample_graphs = object $ sample_graphs
    all_graphs    = object $ all_graphs
	graph_weights = object $ graph_weights
        
    sample_G = sample( x = sample_graphs, size = iter, replace = TRUE, prob = graph_weights ) 
    
    G_i = matrix( 0, nrow = p, ncol = p )
    upper_G_i = G_i[ upper.tri( G_i ) ]
    
    Z = matrix( 0, nrow = iter, ncol = p )
        
    for( i in 1:iter )
    {
        upper_G_i = upper_G_i * 0
        
        upper_G_i[ which( unlist( strsplit( as.character( sample_G[i] ), "" ) ) == 1 ) ] = 1
        
        G_i[ upper.tri( G_i ) ] = upper_G_i

        K_i = BDgraph::rgwish( n = 1, adj = G_i, b = 3 + n_data, D = diag( p ) + S )
        sigma_i = solve( K_i )
        
        Z[ i, ] = BDgraph::rmvnorm( n = 1, mean = 0, sigma = sigma_i )
    }
    
    if( method == "ggm" )
        sample = Z

	if( method == "tgm" )
	{
	    mean = 0
	    nu   = 1
	    
	    tau_gamma = stats::rgamma( n = iter, shape = nu / 2, rate = nu / 2 )
        sample    = mean + Z / sqrt( tau_gamma )
	}
    
    if( method == "gcgm" ) 
    {
        K = object $ K_hat
        
        if( is.null( K ) )
        {
            G = BDgraph::select( bdgraph.obj = object )
            
            sample_K = BDgraph::rgwish( n = 500, adj = G, b = 3 + n_data, D = diag( p ) + S )
            
            K = 0 * G
            for( i in 1:dim( sample_K )[3] )
                K = K + sample_K[[i]]
            
            K = K / dim( sample_K )[3]
        }
        
        sample = 0 * Z
        
        for( j in 1:p )
        {
            sdj = sqrt( 1 / K[ j, j ] )     # 2a: # variance of component j (given the rest!)
            muj = - sum( Z[ , -j, drop = FALSE ] %*% K[ -j, j, drop = FALSE ] / K[ j, j ] )	 
            
            table_j = table( data[ , j ] )
            cat_y_j = as.numeric( names( table_j ) ) 
            len_cat_y_j = length( cat_y_j )
            
            if( len_cat_y_j > 1 )
            {
                cum_prop_yj = cumsum( table_j[ -len_cat_y_j ] ) / n_data
                
                #cut_j = vector( length = len_cat_y_j - 1 )
                # for( k in 1:length( cut_j ) ) cut_j[ k ] = stats::qnorm( cum_prop_yj[ k ] )
                cut_j = stats::qnorm( cum_prop_yj, mean = 0, sd = 1 )
                            
            	breaks = c( min( Z[ , j ] ) - 1, cut_j, max( Z[ , j ] ) + 1 )  
            	
            	ind_sj = as.integer( cut( Z[ , j ], breaks = breaks, right = FALSE ) )
            	
            	sample[ , j ]  = cat_y_j[ ind_sj ]
            }else{
                sample[ , j ]  = cat_y_j
            }
        }
    }

    if( method == "dw" )
    {
        q    = object $ q.est
        beta = object $ beta.est
        mean = rep( 0, p )
        
        #Z = tmvtnorm::rtmvnorm( n = iter, mean = mean, sigma = sigma, lower = rep( -5, length = p ), upper = rep( 5, length = p ) )
        
        pnorm_Z = stats::pnorm( Z )
        
        if( is.matrix( q ) && is.matrix( beta ) )
        {
            for( j in 1 : p ) 
                sample[ ,j ] = BDgraph::qdweibull( pnorm_Z[ , j ], q = q[ , j ], beta = beta[ , j ], zero = TRUE )
        }
        
        if( is.vector( q ) && is.vector( beta ) )
        {
            for( j in 1 : p ) 
                sample[ , j ] = BDgraph::qdweibull( pnorm_Z[ , j ], q = q[ j ], beta = beta[ j ], zero = TRUE )		    
        }
    }
        
    return( sample )
}
  
## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |