File: merge.R

package info (click to toggle)
r-cran-bit 4.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 996 kB
  • sloc: ansic: 5,083; makefile: 6
file content (335 lines) | stat: -rw-r--r-- 14,835 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Fast methods for sorted integers
# (c) 2016-2017 Jens Oehlschägel
# Licence: GPL2
# Provided 'as is', use at your own risk


# Attention: 
#   must not use as.integer() on x and y here, otherwise we cannot pass bitwhich objects
#   (as.integer) would turn positions into 0/1

#' Fast functions for sorted sets of integer
#' 
#' The \code{merge_} functions allow unary and binary operations 
#' on (ascending) sorted vectors of \code{link{integer}}. 
#' \code{merge_rev(x)} will do in one scan what costs two scans in \code{-\link{rev}(x)}, see also \code{\link{reverse_vector}(x)}.
#' Many of these \code{merge_} can optionally scan their input in reverse order (and switch the sign), 
#' which again saves extra scans for calling \code{merge_rev(x)} first. 
#' 
#' @details These are low-level functions and hence do not check whether the set is actually sorted. 
#' Note that the `merge_*` and `merge_range*` functions have no special treatment for `NA`. 
#' If vectors with `NA` are sorted ith `NA` in the first positions (`na.last=FALSE`) and arguments `revx=` or `revy=` have not been used, 
#' then `NAs` are treated like ordinary integers. 
#' `NA` sorted elsewhere or using `revx=` or `revy=` can cause unexpected results 
#' (note for example that `revx=` switches the sign on all integers but `NAs`). 
#' \cr
#' \cr
#' The *binary* `merge_*` functions have a `method="exact"` 
#' which in both sets treats consecutive occurrences of the same value as if they were different values,
#' more precisely they are handled as if the identity of ties were tuples of \code{ties, rank(ties)}. 
#' \code{method="exact"} delivers unique output if the input is unique, and in this case works faster than \code{method="unique"}.
#' 
#' @note xx OPTIMIZATION OPPORTUNITY These are low-level functions could be optimized with initial binary search (not findInterval, which coerces to double).
#'
#' @param x a sorted set
#' @param rx range of integers given as \code{\link{ri}} or as a two-element \code{\link{integer}}
#' @param y a sorted set
#' @param revx default \code{FALSE}, set to \code{TRUE} to reverse scan parameter 'x'
#' @param revy default \code{FALSE}, set to \code{TRUE} to reverse scan parameter 'y'
#' @param nomatch integer value returned for non-matched elements, see \code{\link{match}}
#' @param method one of "unique", "exact" (or "all") which governs how to treat ties, see the function descriptions 
#'
#' @return \code{merge_rev(x)} returns \code{-\link{rev}(x)} for \code{\link{integer}} and \code{\link{double}} and \code{!\link{rev}(x)} for \code{\link{logical}}
#'
#' @examples
#' merge_rev(1:9)
#' 
#' merge_match(1:7, 3:9)
#' #' merge_match(merge_rev(1:7), 3:9)
#' merge_match(merge_rev(1:7), 3:9, revx=TRUE)
#' merge_match(merge_rev(1:7), 3:9, revy=TRUE)
#' merge_match(merge_rev(1:7), merge_rev(3:9))
#' 
#' merge_in(1:7, 3:9)
#' merge_notin(1:7, 3:9)
#' 
#' merge_anyDuplicated(c(1L,1L,2L,3L))
#' merge_duplicated(c(1L,1L,2L,3L))
#' merge_unique(c(1L,1L,2L,3L))
#' 
#' merge_union(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_union(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' merge_union(c(1L,2L,2L,2L), c(2L,2L,3L), method="all")
#' 
#' merge_setdiff(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_setdiff(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' merge_setdiff(c(1L,2L,2L), c(2L,2L,2L,3L), method="exact")
#' 
#' merge_symdiff(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_symdiff(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' merge_symdiff(c(1L,2L,2L), c(2L,2L,2L,3L), method="exact")
#' 
#' merge_intersect(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_intersect(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' 
#' merge_setequal(c(1L,2L,2L), c(1L,2L))
#' merge_setequal(c(1L,2L,2L), c(1L,2L,2L))
#' merge_setequal(c(1L,2L,2L), c(1L,2L), method="exact")
#' merge_setequal(c(1L,2L,2L), c(1L,2L,2L), method="exact")
#' 
#' @export

merge_rev <- function(x){
  .Call(C_R_merge_rev, x)
}

#' @describeIn merge_rev returns integer positions of sorted set x in sorted set y, see \code{\link{match}(x, y, ...)}
#' @export
merge_match <- function(x, y, revx=FALSE, revy=FALSE, nomatch = NA_integer_){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_match, x, y, as.logical(revx), as.logical(revy), nomatch=as.integer(nomatch))
}

# xx OPTIMIZATION OPPORTUNITY this could be optimized with proper binary search (not findInterval, which coerces to double)
#' @describeIn merge_rev returns logical existence of sorted set x in sorted set y, see \code{x \link{\%in\%} y}
#' @export
merge_in <- function(x, y, revx=FALSE, revy=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_in, x, y, as.logical(revx), as.logical(revy))
}

# xx OPTIMIZATION OPPORTUNITY this could be optimized with proper binary search (not findInterval, which coerces to double)
#' @describeIn merge_rev returns logical in-existence of sorted set x in sorted set y, see \code{!(x \link{\%in\%} y)}
#' @export
merge_notin <- function(x, y, revx=FALSE, revy=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_notin, x, y, as.logical(revx), as.logical(revy))
}

#' @describeIn merge_rev returns the duplicated status of a sorted set x, see \code{\link{duplicated}}
#' @export
merge_duplicated <- function(x, revx=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  .Call(C_R_merge_duplicated, x, as.logical(revx))
}

#' @describeIn merge_rev returns the anyDuplicated status of a sorted set x, see \code{\link{anyDuplicated}}
#' @export
merge_anyDuplicated <- function(x, revx=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  .Call(C_R_merge_anyDuplicated, x, as.logical(revx))
}

#' @describeIn merge_rev returns the sumDuplicated status of a sorted set x, see \code{\link{bit_sumDuplicated}}
#' @export
merge_sumDuplicated <- function(x, revx=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  .Call(C_R_merge_sumDuplicated, x, as.logical(revx))
}
#' @describeIn merge_rev returns unique elements of sorted set x, see \code{\link{unique}}
#' @export
merge_unique <- function(x, revx=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  .Call(C_R_merge_unique, x, as.logical(revx))
}

#' @describeIn merge_rev returns union of two sorted sets.
#' Default \code{method='unique'} returns a unique sorted set, see \code{\link{union}}; 
#' \code{method='exact'} returns a sorted set with the maximum number of ties in either input set;
#' \code{method='all'} returns a sorted set with the sum of ties in both input sets.
#' @export
merge_union <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact","all")){
  method <- match.arg(method)
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_union, x, y, as.logical(revx), as.logical(revy), method)
}

#' @describeIn merge_rev returns sorted set x minus sorted set y
#' Default \code{method='unique'} returns a unique sorted set, see \code{\link{setdiff}}; 
#' \code{ethod='exact'} returns a sorted set with sum(x ties) minus sum(y ties);
#' @export
merge_setdiff <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_setdiff, x, y, as.logical(revx), as.logical(revy), method)
}

#' @describeIn merge_rev returns those elements that are in sorted set \code{y} \code{\link{xor}} in sorted set \code{y}
#' Default \code{method='unique'} returns the sorted unique set complement, see \code{\link{symdiff}}; 
#' \code{method='exact'} returns a sorted set set complement with abs(sum(x ties) minus sum(y ties));
#' @export
merge_symdiff <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_symdiff, x, y, as.logical(revx), as.logical(revy), method)
}

#' @describeIn merge_rev returns the intersection of two sorted sets x and y
#' Default \code{method='unique'} returns the sorted unique intersect, see \code{\link{intersect}}; 
#' \code{method='exact'} returns the intersect with the minium number of ties in either set;
#' @export
merge_intersect <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_intersect, x, y, as.logical(revx), as.logical(revy), method)
}

#' @describeIn merge_rev returns \code{TRUE} for equal sorted sets and \code{FALSE} otherwise
#' Default \code{method='unique'} compares the sets after removing ties, see \code{\link{setequal}};  
#' \code{method='exact'} compares the sets without removing ties;
#' @export
merge_setequal <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_setequal, x, y, as.logical(revx), as.logical(revy), method)
}

#' @describeIn merge_rev returns logical existence of range rx in sorted set y, see \code{\link{merge_in}}
#' @export
merge_rangein <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_rangein, rx, y, as.logical(revx), as.logical(revy))
}

#' @describeIn merge_rev returns logical in-existence of range rx in sorted set y, see \code{\link{merge_notin}}
#' @export
merge_rangenotin <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_rangenotin, rx, y, as.logical(revx), as.logical(revy))
}

#' @describeIn merge_rev returns the intersection of range rx and sorted set y, see \code{\link{merge_intersect}}
#' @export
merge_rangesect <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_rangesect, rx, y, as.logical(revx), as.logical(revy))
}

#' @describeIn merge_rev returns range rx minus sorted set y, see \code{\link{merge_setdiff}}
#' @export
merge_rangediff <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_rangediff, rx, y, as.logical(revx), as.logical(revy))
}

#' @describeIn merge_rev quickly returns the first element of a sorted set x (or \code{NA} if x is empty), hence \code{x[1]} or \code{merge_rev(x)[1]}
#' @export
merge_first <- function(x, revx=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  .Call(C_R_merge_first, x, as.logical(revx))
}
#' @describeIn merge_rev quickly returns the last element of a sorted set x, (or \code{NA} if x is empty), hence \code{x[n]} or \code{merge_rev(x)[n]}
#' @export
merge_last <- function(x, revx=FALSE){
  if (!(is.integer(x) || is.ordered(x)))
    stop("x must be integer (or ordered factor)")
  .Call(C_R_merge_last, x, as.logical(revx))
}

#' @describeIn merge_rev quickly returns the first common element of a range rx and a sorted set y, (or \code{NA} if the intersection is empty), hence \code{merge_first(merge_rangesect(rx,y))}
#' @export
merge_firstin <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_firstin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the last common element of a range rx and a sorted set y, (or \code{NA} if the intersection is empty), hence \code{merge_last(merge_rangesect(rx,y))}
#' @export
merge_lastin <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_lastin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the first element of a range rx which is not in a sorted set y (or \code{NA} if all rx are in y), hence \code{merge_first(merge_rangediff(rx,y))}
#' @export
merge_firstnotin <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_firstnotin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the last element of a range rx which is not in a sorted set y (or \code{NA} if all rx are in y), hence \code{merge_last(merge_rangediff(rx,y))}
#' @export
merge_lastnotin <- function(rx, y, revx=FALSE, revy=FALSE){
  if (!is.ri(rx)){
    stopifnot(length(rx)==2)
    rx <- as.integer(rx)
  }
  if (!(is.integer(y) || is.ordered(y)))
    stop("y must be integer (or ordered factor)")
  .Call(C_R_merge_lastnotin, rx, y, as.logical(revx), as.logical(revy))
}



#' Symmetric set complement
#'
#' @param x a vector
#' @param y a vector
#' @return \code{union(setdiff(x,y), setdiff(y,x))}
#' @seealso \code{\link{merge_symdiff}} and \code{\link{xor}}
#' @note that \code{symdiff(x,y)} is not \code{\link{identical}} 
#' as \code{symdiff(y,x)} without applying \code{\link{sort}} to the result
#' @examples
#' symdiff(c(1L,2L,2L), c(2L,3L))
#' symdiff(c(2L,3L), c(1L,2L,2L))
#' @export
symdiff <- function(x,y){
  union(setdiff(x,y), setdiff(y,x))  
}