1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
# Fast methods for sorted integers
# (c) 2016-2017 Jens Oehlschägel
# Licence: GPL2
# Provided 'as is', use at your own risk
# Attention:
# must not use as.integer() on x and y here, otherwise we cannot pass bitwhich objects
# (as.integer) would turn positions into 0/1
#' Fast functions for sorted sets of integer
#'
#' The \code{merge_} functions allow unary and binary operations
#' on (ascending) sorted vectors of \code{link{integer}}.
#' \code{merge_rev(x)} will do in one scan what costs two scans in \code{-\link{rev}(x)}, see also \code{\link{reverse_vector}(x)}.
#' Many of these \code{merge_} can optionally scan their input in reverse order (and switch the sign),
#' which again saves extra scans for calling \code{merge_rev(x)} first.
#'
#' @details These are low-level functions and hence do not check whether the set is actually sorted.
#' Note that the `merge_*` and `merge_range*` functions have no special treatment for `NA`.
#' If vectors with `NA` are sorted ith `NA` in the first positions (`na.last=FALSE`) and arguments `revx=` or `revy=` have not been used,
#' then `NAs` are treated like ordinary integers.
#' `NA` sorted elsewhere or using `revx=` or `revy=` can cause unexpected results
#' (note for example that `revx=` switches the sign on all integers but `NAs`).
#' \cr
#' \cr
#' The *binary* `merge_*` functions have a `method="exact"`
#' which in both sets treats consecutive occurrences of the same value as if they were different values,
#' more precisely they are handled as if the identity of ties were tuples of \code{ties, rank(ties)}.
#' \code{method="exact"} delivers unique output if the input is unique, and in this case works faster than \code{method="unique"}.
#'
#' @note xx OPTIMIZATION OPPORTUNITY These are low-level functions could be optimized with initial binary search (not findInterval, which coerces to double).
#'
#' @param x a sorted set
#' @param rx range of integers given as \code{\link{ri}} or as a two-element \code{\link{integer}}
#' @param y a sorted set
#' @param revx default \code{FALSE}, set to \code{TRUE} to reverse scan parameter 'x'
#' @param revy default \code{FALSE}, set to \code{TRUE} to reverse scan parameter 'y'
#' @param nomatch integer value returned for non-matched elements, see \code{\link{match}}
#' @param method one of "unique", "exact" (or "all") which governs how to treat ties, see the function descriptions
#'
#' @return \code{merge_rev(x)} returns \code{-\link{rev}(x)} for \code{\link{integer}} and \code{\link{double}} and \code{!\link{rev}(x)} for \code{\link{logical}}
#'
#' @examples
#' merge_rev(1:9)
#'
#' merge_match(1:7, 3:9)
#' #' merge_match(merge_rev(1:7), 3:9)
#' merge_match(merge_rev(1:7), 3:9, revx=TRUE)
#' merge_match(merge_rev(1:7), 3:9, revy=TRUE)
#' merge_match(merge_rev(1:7), merge_rev(3:9))
#'
#' merge_in(1:7, 3:9)
#' merge_notin(1:7, 3:9)
#'
#' merge_anyDuplicated(c(1L,1L,2L,3L))
#' merge_duplicated(c(1L,1L,2L,3L))
#' merge_unique(c(1L,1L,2L,3L))
#'
#' merge_union(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_union(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' merge_union(c(1L,2L,2L,2L), c(2L,2L,3L), method="all")
#'
#' merge_setdiff(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_setdiff(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' merge_setdiff(c(1L,2L,2L), c(2L,2L,2L,3L), method="exact")
#'
#' merge_symdiff(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_symdiff(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#' merge_symdiff(c(1L,2L,2L), c(2L,2L,2L,3L), method="exact")
#'
#' merge_intersect(c(1L,2L,2L,2L), c(2L,2L,3L))
#' merge_intersect(c(1L,2L,2L,2L), c(2L,2L,3L), method="exact")
#'
#' merge_setequal(c(1L,2L,2L), c(1L,2L))
#' merge_setequal(c(1L,2L,2L), c(1L,2L,2L))
#' merge_setequal(c(1L,2L,2L), c(1L,2L), method="exact")
#' merge_setequal(c(1L,2L,2L), c(1L,2L,2L), method="exact")
#'
#' @export
merge_rev <- function(x){
.Call(C_R_merge_rev, x)
}
#' @describeIn merge_rev returns integer positions of sorted set x in sorted set y, see \code{\link{match}(x, y, ...)}
#' @export
merge_match <- function(x, y, revx=FALSE, revy=FALSE, nomatch = NA_integer_){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_match, x, y, as.logical(revx), as.logical(revy), nomatch=as.integer(nomatch))
}
# xx OPTIMIZATION OPPORTUNITY this could be optimized with proper binary search (not findInterval, which coerces to double)
#' @describeIn merge_rev returns logical existence of sorted set x in sorted set y, see \code{x \link{\%in\%} y}
#' @export
merge_in <- function(x, y, revx=FALSE, revy=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_in, x, y, as.logical(revx), as.logical(revy))
}
# xx OPTIMIZATION OPPORTUNITY this could be optimized with proper binary search (not findInterval, which coerces to double)
#' @describeIn merge_rev returns logical in-existence of sorted set x in sorted set y, see \code{!(x \link{\%in\%} y)}
#' @export
merge_notin <- function(x, y, revx=FALSE, revy=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_notin, x, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev returns the duplicated status of a sorted set x, see \code{\link{duplicated}}
#' @export
merge_duplicated <- function(x, revx=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
.Call(C_R_merge_duplicated, x, as.logical(revx))
}
#' @describeIn merge_rev returns the anyDuplicated status of a sorted set x, see \code{\link{anyDuplicated}}
#' @export
merge_anyDuplicated <- function(x, revx=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
.Call(C_R_merge_anyDuplicated, x, as.logical(revx))
}
#' @describeIn merge_rev returns the sumDuplicated status of a sorted set x, see \code{\link{bit_sumDuplicated}}
#' @export
merge_sumDuplicated <- function(x, revx=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
.Call(C_R_merge_sumDuplicated, x, as.logical(revx))
}
#' @describeIn merge_rev returns unique elements of sorted set x, see \code{\link{unique}}
#' @export
merge_unique <- function(x, revx=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
.Call(C_R_merge_unique, x, as.logical(revx))
}
#' @describeIn merge_rev returns union of two sorted sets.
#' Default \code{method='unique'} returns a unique sorted set, see \code{\link{union}};
#' \code{method='exact'} returns a sorted set with the maximum number of ties in either input set;
#' \code{method='all'} returns a sorted set with the sum of ties in both input sets.
#' @export
merge_union <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact","all")){
method <- match.arg(method)
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_union, x, y, as.logical(revx), as.logical(revy), method)
}
#' @describeIn merge_rev returns sorted set x minus sorted set y
#' Default \code{method='unique'} returns a unique sorted set, see \code{\link{setdiff}};
#' \code{ethod='exact'} returns a sorted set with sum(x ties) minus sum(y ties);
#' @export
merge_setdiff <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_setdiff, x, y, as.logical(revx), as.logical(revy), method)
}
#' @describeIn merge_rev returns those elements that are in sorted set \code{y} \code{\link{xor}} in sorted set \code{y}
#' Default \code{method='unique'} returns the sorted unique set complement, see \code{\link{symdiff}};
#' \code{method='exact'} returns a sorted set set complement with abs(sum(x ties) minus sum(y ties));
#' @export
merge_symdiff <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_symdiff, x, y, as.logical(revx), as.logical(revy), method)
}
#' @describeIn merge_rev returns the intersection of two sorted sets x and y
#' Default \code{method='unique'} returns the sorted unique intersect, see \code{\link{intersect}};
#' \code{method='exact'} returns the intersect with the minium number of ties in either set;
#' @export
merge_intersect <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_intersect, x, y, as.logical(revx), as.logical(revy), method)
}
#' @describeIn merge_rev returns \code{TRUE} for equal sorted sets and \code{FALSE} otherwise
#' Default \code{method='unique'} compares the sets after removing ties, see \code{\link{setequal}};
#' \code{method='exact'} compares the sets without removing ties;
#' @export
merge_setequal <- function(x, y, revx=FALSE, revy=FALSE, method=c("unique","exact")){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_setequal, x, y, as.logical(revx), as.logical(revy), method)
}
#' @describeIn merge_rev returns logical existence of range rx in sorted set y, see \code{\link{merge_in}}
#' @export
merge_rangein <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_rangein, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev returns logical in-existence of range rx in sorted set y, see \code{\link{merge_notin}}
#' @export
merge_rangenotin <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_rangenotin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev returns the intersection of range rx and sorted set y, see \code{\link{merge_intersect}}
#' @export
merge_rangesect <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_rangesect, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev returns range rx minus sorted set y, see \code{\link{merge_setdiff}}
#' @export
merge_rangediff <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_rangediff, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the first element of a sorted set x (or \code{NA} if x is empty), hence \code{x[1]} or \code{merge_rev(x)[1]}
#' @export
merge_first <- function(x, revx=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
.Call(C_R_merge_first, x, as.logical(revx))
}
#' @describeIn merge_rev quickly returns the last element of a sorted set x, (or \code{NA} if x is empty), hence \code{x[n]} or \code{merge_rev(x)[n]}
#' @export
merge_last <- function(x, revx=FALSE){
if (!(is.integer(x) || is.ordered(x)))
stop("x must be integer (or ordered factor)")
.Call(C_R_merge_last, x, as.logical(revx))
}
#' @describeIn merge_rev quickly returns the first common element of a range rx and a sorted set y, (or \code{NA} if the intersection is empty), hence \code{merge_first(merge_rangesect(rx,y))}
#' @export
merge_firstin <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_firstin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the last common element of a range rx and a sorted set y, (or \code{NA} if the intersection is empty), hence \code{merge_last(merge_rangesect(rx,y))}
#' @export
merge_lastin <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_lastin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the first element of a range rx which is not in a sorted set y (or \code{NA} if all rx are in y), hence \code{merge_first(merge_rangediff(rx,y))}
#' @export
merge_firstnotin <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_firstnotin, rx, y, as.logical(revx), as.logical(revy))
}
#' @describeIn merge_rev quickly returns the last element of a range rx which is not in a sorted set y (or \code{NA} if all rx are in y), hence \code{merge_last(merge_rangediff(rx,y))}
#' @export
merge_lastnotin <- function(rx, y, revx=FALSE, revy=FALSE){
if (!is.ri(rx)){
stopifnot(length(rx)==2)
rx <- as.integer(rx)
}
if (!(is.integer(y) || is.ordered(y)))
stop("y must be integer (or ordered factor)")
.Call(C_R_merge_lastnotin, rx, y, as.logical(revx), as.logical(revy))
}
#' Symmetric set complement
#'
#' @param x a vector
#' @param y a vector
#' @return \code{union(setdiff(x,y), setdiff(y,x))}
#' @seealso \code{\link{merge_symdiff}} and \code{\link{xor}}
#' @note that \code{symdiff(x,y)} is not \code{\link{identical}}
#' as \code{symdiff(y,x)} without applying \code{\link{sort}} to the result
#' @examples
#' symdiff(c(1L,2L,2L), c(2L,3L))
#' symdiff(c(2L,3L), c(1L,2L,2L))
#' @export
symdiff <- function(x,y){
union(setdiff(x,y), setdiff(y,x))
}
|