File: bit-performance.Rmd

package info (click to toggle)
r-cran-bit 4.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 996 kB
  • sloc: ansic: 5,083; makefile: 6
file content (639 lines) | stat: -rw-r--r-- 19,677 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
---
title: "Performance of the bit package"
author: "Dr. Jens Oehlschlägel"
date: '`r Sys.Date()`'
output:
  pdf_document:
    toc: yes
    toc_depth: 3
vignette: >
  %\VignetteIndexEntry{Performance of the bit package}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---


```{r, echo = FALSE, results = "hide", message = FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
require(bit)
require(microbenchmark)
# rmarkdown::render("vignettes/bit-performance.Rmd")
# these are the real settings for the performance vignette
times <- 5
Domain <- c(small=1e3, big=1e6)
Sample <- c(small=1e3, big=1e6)
# these are the settings to keep the cost of CRAN low
#times <- 5
#Domain <- c(small=1e1, big=1e3)
#Sample <- c(small=1e1, big=1e3)

pagebreak <- function() {
  if(knitr::is_latex_output())
    return("\\newpage")
  else
    return('<div style="page-break-before: always;" />')
}

```

---


## A performance example

Before we measure performance of the main functionality of the package, note that something simple as '(a:b)[-i]' can and has been accelerated in this package:

```{r, echo=TRUE, results='asis'}
a <- 1L
b <- 1e7L
i <- sample(a:b,1e3)
x <- c(
  R = median(microbenchmark((a:b)[-i], times=times)$time)
, bit = median(microbenchmark(bit_rangediff(c(a,b), i), times=times)$time)
, merge = median(microbenchmark(merge_rangediff(c(a,b), bit_sort(i)), times=times)$time)
)
knitr::kable(as.data.frame(as.list(x/x["R"]*100)), caption="% of time relative to R", digits=1)
```

The vignette is compiled with the following performance settings: `r times` replications with domain size small `r Domain["small"]` and big `r Domain["big"]`, sample size small `r Sample["small"]` and big `r Sample["big"]`. 

## Boolean data types


> "A designer knows he has achieved perfection not when there is nothing left to add, but when there is nothing left to take away."  
"Il semble que la perfection soit atteinte non quand il n'y a plus rien à ajouter, mais quand il n'y a plus rien à retrancher"  
(Antoine de St. Exupery, Terre des Hommes (Gallimard, 1939), p. 60.)

We compare memory consumption (n=`r format(Sample[["big"]])`) and runtime (median of `r times` replications) of the different `booltype`s for the following filter scenarios:

```{r, echo=FALSE, results='asis'}
knitr::kable(
  data.frame(coin="random 50%", often="random 99%", rare="random 1%", chunk="contiguous chunk of 5%")
  , caption="selection characteristic")
```

```{r, echo=FALSE, results='asis'}
B <- booltypes[c("logical","bit","bitwhich","which","ri")]
M <- c("size", "[]", "[which]", "[which]<-TRUE", "[]<-logical", "!", "&", "|", "==", "!=", "summary")
G <- list(
  coin = function(n)sample(c(FALSE, TRUE), n, replace=TRUE, prob=c(0.5,0.5))
, often = function(n)sample(c(FALSE, TRUE), n, replace=TRUE, prob=c(0.01,0.99))
, rare = function(n)sample(c(FALSE, TRUE), n, replace=TRUE, prob=c(0.99,0.01))
, chunk = function(n)ri(n%/%20,2L*n%/%20,n)
)
X <- vector("list", length(B)*length(G))
dim(X) <- c(booltype=length(B), data=length(G))
dimnames(X) <- list(booltype=names(B), data=names(G))
tim <- array(NA
             , dim=c(booltype=length(B), metric=length(M), data=length(G))
             , dimnames=list(booltype=names(B), metric=M, data=names(G))
             )
for (g in names(G)){
  x <- G[[g]](Sample[["big"]])
  if (g %in% c("coin","often","rare"))
    w <- as.which(as.logical(x))
  for (b in B){
    if (booltypes[[b]] < 'ri' || (b == 'ri' && g=='chunk')){
      X[[b,g]] <- as.booltype(x, b)
      if (g %in% c("coin","often","rare") && b %in% c("logical","bit","bitwhich")){
        l <- as.booltype(logical(Sample[["big"]]), b)
        tim[b,"[which]",g] <- median(microbenchmark(l[w], times=times)$time)
        tim[b,"[which]<-TRUE",g] <- median(microbenchmark(l[w]<-TRUE, times=times)$time)
        tim[b,"[]",g] <- median(microbenchmark(l[], times=times)$time)
        tim[b,"[]<-logical",g] <- median(microbenchmark(l[]<-x, times=times)$time)
      }
      tim[b,"size",g] <- object.size(X[[b,g]])
    }
  }
}
for (g in names(G)){
  for (b in c("logical","bit","bitwhich")){
    x <- X[[b,g]]
    if (!is.null(x)){
      tim[b,"!",g] <- median(microbenchmark(!x, times=times)$time)
      tim[b,"&",g] <- median(microbenchmark(x & x, times=times)$time)
      tim[b,"|",g] <- median(microbenchmark(x | x, times=times)$time)
      tim[b,"==",g] <- median(microbenchmark(x == x, times=times)$time)
      tim[b,"!=",g] <- median(microbenchmark(x != x, times=times)$time)
      tim[b,"summary",g] <- median(microbenchmark(summary.booltype(x), times=times)$time)
    }
  }
}
i <- match("size", M)
for(b in rev(names(B)))  # logical was in first position, so we do this last!
{
  tim[b,i,] <- 100 * tim[b,i,] / tim["logical",i,]
  tim[b,-i,] <- 100 * tim[b,-i,] / max(tim["logical",-i,], na.rm=TRUE)
}
#rm(X)
```

There are substantial savings in skewed filter situations:

```{r, echo=FALSE, fig.cap = "% size and execution time for bit (b) and bitwhich (w) relative to logical (R) in the 'rare' scenario"}
x <- tim[1:3,,"rare"]
m <- rep("", ncol(x))
m <- as.vector(rbind(m, colnames(x), m))
dotchart(x, xlim=c(0,max(100, max(x))), labels=m, pch=c("R","b","w"), col=c("black","blue","red"), main="% size and timings in 'rare' scenario", sub="l='logical'  b='bit'  w='bitwhich'           % of max(R) in all scenarios")
```

```{r, echo=FALSE, fig.cap = "% size and execution time for bit (b) and bitwhich (w) relative to logical (R) in the 'often' scenario"}
x <- tim[1:3,,"often"]
dotchart(x, xlim=c(0,max(100, max(x))), labels=m, pch=c("R","b","w"), col=c("black","blue","red"), main="% size and timings in 'often' scenario", sub="l='logical'  b='bit'  w='bitwhich'           % of max(R) in all scenarios")
```

Even in non-skewed situations the new booltypes are competitive:

```{r, echo=FALSE, fig.cap = "% size and execution time for bit (b) and bitwhich (w) relative to logical (R) in the 'coin' scenario"}
x <- tim[1:3,,"coin"]
dotchart(x, xlim=c(0,max(100, max(x))), labels=m, pch=c("R","b","w"), col=c("black","blue","red"), main="% size and timings in 'coin' scenario", sub="l='logical'  b='bit'  w='bitwhich'           % of max(R) in all scenarios")
```

Detailed tables follow.


`r pagebreak()`


### % memory consumption of filter

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"size",], 1), caption="% bytes of logical")
```

### % time extracting

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[]",], 1), caption="% time of logical")
```

### % time assigning

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[]<-logical",], 1), caption="% time of logical")
```

### % time subscripting with 'which'

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[which]",], 1), caption="% time of logical")
```

### % time assigning with 'which'

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[which]<-TRUE",], 1), caption="% time of logical")
```

### % time Boolean NOT

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"!",], 1), caption="% time for Boolean NOT")
```

### % time Boolean AND

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"&",], 1), caption="% time for Boolean &")
```


### % time Boolean OR

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"|",], 1), caption="% time for Boolean |")
```

### % time Boolean EQUALITY

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"==",], 1), caption="% time for Boolean ==")
```

### % time Boolean XOR
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"!=",], 1), caption="% time for Boolean !=")
```

### % time Boolean SUMMARY

```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"summary",][1:2,1:2], 1), caption="% time for Boolean summary")
```

---

## Fast methods for `integer` set operations

> "The space-efficient structure of bitmaps dramatically reduced the run time of sorting"  
(Jon Bently, Programming Pearls, Cracking the oyster, p. 7)


```{r, echo=FALSE, results='asis'}
binaryDomain <- list(
    smallsmall = rep(Domain["small"], 2)
  , smallbig=Domain
  , bigsmall=rev(Domain)
  , bigbig=rep(Domain["big"], 2)
)
binarySample <- list(
    smallsmall = rep(Sample["small"], 2)
  , smallbig=Sample
  , bigsmall=rev(Sample)
  , bigbig=rep(Sample["big"], 2)
)

M <- c("R","bit","merge")
G <- c("sort","sortunique")
D <- c("unsorted","sorted")

sortM <- vector("list", length(M)*length(G))
dim(sortM) <- c(method=length(M), goal=length(G))
dimnames(sortM) <- list(method=M, goal=G)
sortM[["R","sort"]] <- sort
sortM[["R", "sortunique"]] <- function(x)sort(unique(x))
sortM[["bit","sort"]] <- bit_sort
sortM[["bit","sortunique"]] <- bit_sort_unique

timsort <- array(NA_integer_
             , dim=c(M=2, G=length(G), D=length(D), N=length(Domain)) 
             , dimnames=list(M=M[1:2], G=G, D=D, N=names(Domain)) 
             )
for(n in names(Domain)){
  x <- sample(Domain[[n]], Sample[[n]], replace = TRUE)
  d <- "unsorted"
  for (m in c("R","bit")){
    for (g in G){
      timsort[m,g,d,n] <- median(microbenchmark(sortM[[m,g]](x), times=times)$time)
    }
  }
  x <- bit_sort(x)
  d <- "sorted"
  for (m in 1:2){
    for (g in G){
      timsort[m,g,d,n] <- median(microbenchmark(sortM[[m,g]](x), times=times)$time)
    }
  }
}


binaryU <- c("match","in","notin","union","intersect","setdiff","symdiff","setequal","setearly")
binaryM <- vector("list", length(M)*length(binaryU))
dim(binaryM) <- c(method=length(M), task=length(binaryU))
dimnames(binaryM) <- list(method=M, task=binaryU)
binaryM[["R","match"]] <- match
binaryM[["merge","match"]] <- merge_match

binaryM[["R","in"]] <- get("%in%")
binaryM[["bit","in"]] <- bit_in
binaryM[["merge","in"]] <- merge_in

binaryM[["R","notin"]] <- function(x, y)!(x %in% y)
binaryM[["bit","notin"]] <- function(x, y)!bit_in(x,y)
binaryM[["merge","notin"]] <- merge_notin

binaryM[["R","union"]] <- union
binaryM[["bit","union"]] <- bit_union
binaryM[["merge","union"]] <- merge_union

binaryM[["R","intersect"]] <- intersect
binaryM[["bit","intersect"]] <- bit_intersect
binaryM[["merge","intersect"]] <- merge_intersect

binaryM[["R","setdiff"]] <- setdiff
binaryM[["bit","setdiff"]] <- bit_setdiff
binaryM[["merge","setdiff"]] <- merge_setdiff

binaryM[["R","symdiff"]] <- function(x,y)union(setdiff(x,y), setdiff(y,x))
binaryM[["bit","symdiff"]] <- bit_symdiff
binaryM[["merge","symdiff"]] <- merge_symdiff

binaryM[["R","setequal"]] <- function(x,y)setequal(x,x)  # we compare x to x which avoids early termination and hence 
binaryM[["bit","setequal"]] <- function(x,y)bit_setequal(x,x)
binaryM[["merge","setequal"]] <- function(x,y)merge_setequal(x,x)
  
binaryM[["R","setearly"]] <- function(x,y)setequal(x,y)  # we compare x to x which avoids early termination and hence 
binaryM[["bit","setearly"]] <- function(x,y)bit_setequal(x,y)
binaryM[["merge","setearly"]] <- function(x,y)merge_setequal(x,y)

unaryU <- c("unique","duplicated","anyDuplicated","sumDuplicated")
unaryM <- vector("list", length(M)*length(unaryU))
dim(unaryM) <- c(method=length(M), task=length(unaryU))
dimnames(unaryM) <- list(method=M, task=unaryU)
unaryM[["R","unique"]] <- unique
unaryM[["bit","unique"]] <- bit_unique
unaryM[["merge","unique"]] <- merge_unique
unaryM[["R","duplicated"]] <- duplicated
unaryM[["bit","duplicated"]] <- bit_duplicated
unaryM[["merge","duplicated"]] <- merge_duplicated
unaryM[["R","anyDuplicated"]] <- anyDuplicated
unaryM[["bit","anyDuplicated"]] <- bit_anyDuplicated
unaryM[["merge","anyDuplicated"]] <- merge_anyDuplicated
unaryM[["R","sumDuplicated"]] <- function(x)sum(duplicated(x))
unaryM[["bit","sumDuplicated"]] <- bit_sumDuplicated
unaryM[["merge","sumDuplicated"]] <- merge_sumDuplicated

tim <- array(NA_integer_
             , dim=c(M=length(M), U=length(unaryU)+length(binaryU), N=length(binaryDomain), D=length(D))
             , dimnames=list(M=M, U=c(unaryU,binaryU), N=names(binaryDomain), D=D)
             )

for(n in names(binaryDomain)){
  xnam <- names(binaryDomain[[n]])[1]
  ynam <- names(binaryDomain[[n]])[2]
  x <- sample(binaryDomain[[n]][1], binarySample[[n]][1], replace = FALSE)
  y <- sample(binaryDomain[[n]][2], binarySample[[n]][2], replace = FALSE)
  d <- "unsorted"
  if (length(x)==length(y))
  for (u in unaryU){
    for (m in setdiff(M,"merge")){
      f <- unaryM[[m,u]]
      if (!is.null(f))
        tim[m,u,n,d] <- median(microbenchmark(f(x), times=times)$time)
    }
  }
  for (u in binaryU){
    for (m in setdiff(M,"merge")){
      f <- binaryM[[m,u]]
      if (!is.null(f))
        tim[m,u,n,d] <- median(microbenchmark(f(x,y), times=times)$time)
    }
  }
  x <- bit_sort(x)
  y <- bit_sort(y)
  d <- "sorted"
  if (length(x)==length(y))
  for (u in unaryU){
    for (m in M){
      f <- unaryM[[m,u]]
      if (!is.null(f)){
        tim[m,u,n,d] <- median(microbenchmark(f(x), times=times)$time)
        # now plug-in measures for unsorted merge
        if (m == "merge") 
          tim["merge",u,n,"unsorted"] <- timsort["bit","sort","unsorted",xnam] +  tim["merge",u,n,"sorted"]
      }
    }
  }
  for (u in binaryU){
    for (m in M){
      f <- binaryM[[m,u]]
      if (!is.null(f)){
        tim[m,u,n,d] <- median(microbenchmark(f(x,y), times=times)$time)
        # now plug-in measures for unsorted merge
        if (m == "merge")
          tim["merge",u,n,"unsorted"] <- timsort["bit","sort","unsorted",xnam] + timsort["bit","sort","unsorted",ynam] + tim["merge",u,n,"sorted"]
      }
    }
  }
}
```


```{r, echo=FALSE, fig.cap = "Execution time for R (R) and bit (b)"}
y <- timsort[,,,"big"]
y <- 100 * y / max(y["R",,], na.rm=TRUE)
oldpar <- par(mfrow=c(2,1), mar=c(5,8,2,1))
x <- y[,,"unsorted"]
dotchart(x, xlim=c(0, max(100, max(y))), labels="", pch=c("R","b"), xlab="execution time", main="unsorted", col=c("red","blue"))
x <- y[,,"sorted"]
dotchart(x, xlim=c(0, max(100, max(y))), labels="", pch=c("R","b"), xlab="execution time", main="sorted", col=c("red","blue"))
par(oldpar)
```


```{r, echo=FALSE, results='hide'}
tim2 <- tim
for (n in names(binaryDomain))
  for (d in D)
    tim2[,,n,d] <- 100*tim[,,n,d]/max(tim["R",,n,d], na.rm=TRUE)
```

`r pagebreak()`


```{r, echo=FALSE, fig.cap = "Execution time for R, bit and merge relative to most expensive R in 'unsorted bigbig' scenario"}
y <- tim2[,,"bigbig",]
y <- 100 * y / max(y["R",,], na.rm=TRUE)
x <- y[,,"unsorted"]
m <- rep("", ncol(x))
m <- as.vector(rbind(m, colnames(x), m))
dotchart(x, xlim=c(0, max(100,max(y, na.rm=TRUE))), labels=m, pch=c("R","b","m"), col=c("red","blue","black"), main="Timings in 'unsorted bigbig' scenario", sub="R='hash'   b='bit'   m='merge'")
```

```{r, echo=FALSE, fig.cap = "Execution time for R, bit and merge in 'sorted bigbig' scenario"}
x <- y[,,"sorted"]
dotchart(x, xlim=c(0, max(y, na.rm=TRUE)), labels=m, pch=c("R","b","m"), col=c("red","blue","black"), main="Timings in 'sorted bigbig' scenario", sub="R='hash'   b='bit'   m='merge'")
```

`r pagebreak()`


### % time for sorting

```{r, echo=FALSE, results='asis'}
x <- 100*timsort["bit",,,]/timsort["R",,,]
s <- "sorted"
knitr::kable(x[,s,], caption=paste(s,"data relative to R's sort"), digits=1)
```


```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,s,], caption=paste(s,"data relative to R's sort"), digits=1)
```

### % time for unique

```{r, echo=FALSE, results='asis'}
f <- function(u){
  n <- c("smallsmall","bigbig")
  x <- tim[c("bit","merge","merge"),u,n,]
  dimnames(x)$M[3] <- "sort"
  dimnames(x)$N <- c("small","big")
  x["sort",,"unsorted"] <- timsort["bit","sort","unsorted",]
  x["sort",,"sorted"] <- 0
  for (m in dimnames(x)$M)
    x[m,,] <- x[m,,] / tim["R",u,n,] * 100
  x
}
x <- f("unique")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```


### % time for duplicated

```{r, echo=FALSE, results='asis'}
x <- f("duplicated")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```



### % time for anyDuplicated

```{r, echo=FALSE, results='asis'}
x <- f("anyDuplicated")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for sumDuplicated

```{r, echo=FALSE, results='asis'}
x <- f("sumDuplicated")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```




### % time for match
```{r, echo=FALSE, results='asis'}
f <- function(u){
  x <- tim[c("bit","merge","merge"),u,,]
  dimnames(x)$M[3] <- "sort"
  s <- timsort["bit","sort","unsorted",]
  x["sort",,"unsorted"] <- rep(s, c(2,2)) + c(s,s)
  x["sort",,"sorted"] <- 0
  for (m in dimnames(x)$M)
    x[m,,] <- x[m,,] / tim["R",u,,] * 100
  x
}
x <- f("match")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for in

```{r, echo=FALSE, results='asis'}
x <- f("in")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for notin

```{r, echo=FALSE, results='asis'}
x <- f("notin")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```


### % time for union


```{r, echo=FALSE, results='asis'}
x <- f("union")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for intersect


```{r, echo=FALSE, results='asis'}
x <- f("intersect")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for setdiff


```{r, echo=FALSE, results='asis'}
x <- f("setdiff")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for symdiff


```{r, echo=FALSE, results='asis'}
x <- f("symdiff")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```


### % time for setequal


```{r, echo=FALSE, results='asis'}
x <- f("setequal")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```

### % time for setearly


```{r, echo=FALSE, results='asis'}
x <- f("setearly")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```