1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
---
title: "Performance of the bit package"
author: "Dr. Jens Oehlschlägel"
date: '`r Sys.Date()`'
output:
pdf_document:
toc: yes
toc_depth: 3
vignette: >
%\VignetteIndexEntry{Performance of the bit package}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, echo = FALSE, results = "hide", message = FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
require(bit)
require(microbenchmark)
# rmarkdown::render("vignettes/bit-performance.Rmd")
# these are the real settings for the performance vignette
times <- 5
Domain <- c(small=1e3, big=1e6)
Sample <- c(small=1e3, big=1e6)
# these are the settings to keep the cost of CRAN low
#times <- 5
#Domain <- c(small=1e1, big=1e3)
#Sample <- c(small=1e1, big=1e3)
pagebreak <- function() {
if(knitr::is_latex_output())
return("\\newpage")
else
return('<div style="page-break-before: always;" />')
}
```
---
## A performance example
Before we measure performance of the main functionality of the package, note that something simple as '(a:b)[-i]' can and has been accelerated in this package:
```{r, echo=TRUE, results='asis'}
a <- 1L
b <- 1e7L
i <- sample(a:b,1e3)
x <- c(
R = median(microbenchmark((a:b)[-i], times=times)$time)
, bit = median(microbenchmark(bit_rangediff(c(a,b), i), times=times)$time)
, merge = median(microbenchmark(merge_rangediff(c(a,b), bit_sort(i)), times=times)$time)
)
knitr::kable(as.data.frame(as.list(x/x["R"]*100)), caption="% of time relative to R", digits=1)
```
The vignette is compiled with the following performance settings: `r times` replications with domain size small `r Domain["small"]` and big `r Domain["big"]`, sample size small `r Sample["small"]` and big `r Sample["big"]`.
## Boolean data types
> "A designer knows he has achieved perfection not when there is nothing left to add, but when there is nothing left to take away."
"Il semble que la perfection soit atteinte non quand il n'y a plus rien à ajouter, mais quand il n'y a plus rien à retrancher"
(Antoine de St. Exupery, Terre des Hommes (Gallimard, 1939), p. 60.)
We compare memory consumption (n=`r format(Sample[["big"]])`) and runtime (median of `r times` replications) of the different `booltype`s for the following filter scenarios:
```{r, echo=FALSE, results='asis'}
knitr::kable(
data.frame(coin="random 50%", often="random 99%", rare="random 1%", chunk="contiguous chunk of 5%")
, caption="selection characteristic")
```
```{r, echo=FALSE, results='asis'}
B <- booltypes[c("logical","bit","bitwhich","which","ri")]
M <- c("size", "[]", "[which]", "[which]<-TRUE", "[]<-logical", "!", "&", "|", "==", "!=", "summary")
G <- list(
coin = function(n)sample(c(FALSE, TRUE), n, replace=TRUE, prob=c(0.5,0.5))
, often = function(n)sample(c(FALSE, TRUE), n, replace=TRUE, prob=c(0.01,0.99))
, rare = function(n)sample(c(FALSE, TRUE), n, replace=TRUE, prob=c(0.99,0.01))
, chunk = function(n)ri(n%/%20,2L*n%/%20,n)
)
X <- vector("list", length(B)*length(G))
dim(X) <- c(booltype=length(B), data=length(G))
dimnames(X) <- list(booltype=names(B), data=names(G))
tim <- array(NA
, dim=c(booltype=length(B), metric=length(M), data=length(G))
, dimnames=list(booltype=names(B), metric=M, data=names(G))
)
for (g in names(G)){
x <- G[[g]](Sample[["big"]])
if (g %in% c("coin","often","rare"))
w <- as.which(as.logical(x))
for (b in B){
if (booltypes[[b]] < 'ri' || (b == 'ri' && g=='chunk')){
X[[b,g]] <- as.booltype(x, b)
if (g %in% c("coin","often","rare") && b %in% c("logical","bit","bitwhich")){
l <- as.booltype(logical(Sample[["big"]]), b)
tim[b,"[which]",g] <- median(microbenchmark(l[w], times=times)$time)
tim[b,"[which]<-TRUE",g] <- median(microbenchmark(l[w]<-TRUE, times=times)$time)
tim[b,"[]",g] <- median(microbenchmark(l[], times=times)$time)
tim[b,"[]<-logical",g] <- median(microbenchmark(l[]<-x, times=times)$time)
}
tim[b,"size",g] <- object.size(X[[b,g]])
}
}
}
for (g in names(G)){
for (b in c("logical","bit","bitwhich")){
x <- X[[b,g]]
if (!is.null(x)){
tim[b,"!",g] <- median(microbenchmark(!x, times=times)$time)
tim[b,"&",g] <- median(microbenchmark(x & x, times=times)$time)
tim[b,"|",g] <- median(microbenchmark(x | x, times=times)$time)
tim[b,"==",g] <- median(microbenchmark(x == x, times=times)$time)
tim[b,"!=",g] <- median(microbenchmark(x != x, times=times)$time)
tim[b,"summary",g] <- median(microbenchmark(summary.booltype(x), times=times)$time)
}
}
}
i <- match("size", M)
for(b in rev(names(B))) # logical was in first position, so we do this last!
{
tim[b,i,] <- 100 * tim[b,i,] / tim["logical",i,]
tim[b,-i,] <- 100 * tim[b,-i,] / max(tim["logical",-i,], na.rm=TRUE)
}
#rm(X)
```
There are substantial savings in skewed filter situations:
```{r, echo=FALSE, fig.cap = "% size and execution time for bit (b) and bitwhich (w) relative to logical (R) in the 'rare' scenario"}
x <- tim[1:3,,"rare"]
m <- rep("", ncol(x))
m <- as.vector(rbind(m, colnames(x), m))
dotchart(x, xlim=c(0,max(100, max(x))), labels=m, pch=c("R","b","w"), col=c("black","blue","red"), main="% size and timings in 'rare' scenario", sub="l='logical' b='bit' w='bitwhich' % of max(R) in all scenarios")
```
```{r, echo=FALSE, fig.cap = "% size and execution time for bit (b) and bitwhich (w) relative to logical (R) in the 'often' scenario"}
x <- tim[1:3,,"often"]
dotchart(x, xlim=c(0,max(100, max(x))), labels=m, pch=c("R","b","w"), col=c("black","blue","red"), main="% size and timings in 'often' scenario", sub="l='logical' b='bit' w='bitwhich' % of max(R) in all scenarios")
```
Even in non-skewed situations the new booltypes are competitive:
```{r, echo=FALSE, fig.cap = "% size and execution time for bit (b) and bitwhich (w) relative to logical (R) in the 'coin' scenario"}
x <- tim[1:3,,"coin"]
dotchart(x, xlim=c(0,max(100, max(x))), labels=m, pch=c("R","b","w"), col=c("black","blue","red"), main="% size and timings in 'coin' scenario", sub="l='logical' b='bit' w='bitwhich' % of max(R) in all scenarios")
```
Detailed tables follow.
`r pagebreak()`
### % memory consumption of filter
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"size",], 1), caption="% bytes of logical")
```
### % time extracting
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[]",], 1), caption="% time of logical")
```
### % time assigning
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[]<-logical",], 1), caption="% time of logical")
```
### % time subscripting with 'which'
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[which]",], 1), caption="% time of logical")
```
### % time assigning with 'which'
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"[which]<-TRUE",], 1), caption="% time of logical")
```
### % time Boolean NOT
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"!",], 1), caption="% time for Boolean NOT")
```
### % time Boolean AND
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"&",], 1), caption="% time for Boolean &")
```
### % time Boolean OR
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"|",], 1), caption="% time for Boolean |")
```
### % time Boolean EQUALITY
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"==",], 1), caption="% time for Boolean ==")
```
### % time Boolean XOR
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"!=",], 1), caption="% time for Boolean !=")
```
### % time Boolean SUMMARY
```{r, echo=FALSE, results='asis'}
knitr::kable(round(tim[,"summary",][1:2,1:2], 1), caption="% time for Boolean summary")
```
---
## Fast methods for `integer` set operations
> "The space-efficient structure of bitmaps dramatically reduced the run time of sorting"
(Jon Bently, Programming Pearls, Cracking the oyster, p. 7)
```{r, echo=FALSE, results='asis'}
binaryDomain <- list(
smallsmall = rep(Domain["small"], 2)
, smallbig=Domain
, bigsmall=rev(Domain)
, bigbig=rep(Domain["big"], 2)
)
binarySample <- list(
smallsmall = rep(Sample["small"], 2)
, smallbig=Sample
, bigsmall=rev(Sample)
, bigbig=rep(Sample["big"], 2)
)
M <- c("R","bit","merge")
G <- c("sort","sortunique")
D <- c("unsorted","sorted")
sortM <- vector("list", length(M)*length(G))
dim(sortM) <- c(method=length(M), goal=length(G))
dimnames(sortM) <- list(method=M, goal=G)
sortM[["R","sort"]] <- sort
sortM[["R", "sortunique"]] <- function(x)sort(unique(x))
sortM[["bit","sort"]] <- bit_sort
sortM[["bit","sortunique"]] <- bit_sort_unique
timsort <- array(NA_integer_
, dim=c(M=2, G=length(G), D=length(D), N=length(Domain))
, dimnames=list(M=M[1:2], G=G, D=D, N=names(Domain))
)
for(n in names(Domain)){
x <- sample(Domain[[n]], Sample[[n]], replace = TRUE)
d <- "unsorted"
for (m in c("R","bit")){
for (g in G){
timsort[m,g,d,n] <- median(microbenchmark(sortM[[m,g]](x), times=times)$time)
}
}
x <- bit_sort(x)
d <- "sorted"
for (m in 1:2){
for (g in G){
timsort[m,g,d,n] <- median(microbenchmark(sortM[[m,g]](x), times=times)$time)
}
}
}
binaryU <- c("match","in","notin","union","intersect","setdiff","symdiff","setequal","setearly")
binaryM <- vector("list", length(M)*length(binaryU))
dim(binaryM) <- c(method=length(M), task=length(binaryU))
dimnames(binaryM) <- list(method=M, task=binaryU)
binaryM[["R","match"]] <- match
binaryM[["merge","match"]] <- merge_match
binaryM[["R","in"]] <- get("%in%")
binaryM[["bit","in"]] <- bit_in
binaryM[["merge","in"]] <- merge_in
binaryM[["R","notin"]] <- function(x, y)!(x %in% y)
binaryM[["bit","notin"]] <- function(x, y)!bit_in(x,y)
binaryM[["merge","notin"]] <- merge_notin
binaryM[["R","union"]] <- union
binaryM[["bit","union"]] <- bit_union
binaryM[["merge","union"]] <- merge_union
binaryM[["R","intersect"]] <- intersect
binaryM[["bit","intersect"]] <- bit_intersect
binaryM[["merge","intersect"]] <- merge_intersect
binaryM[["R","setdiff"]] <- setdiff
binaryM[["bit","setdiff"]] <- bit_setdiff
binaryM[["merge","setdiff"]] <- merge_setdiff
binaryM[["R","symdiff"]] <- function(x,y)union(setdiff(x,y), setdiff(y,x))
binaryM[["bit","symdiff"]] <- bit_symdiff
binaryM[["merge","symdiff"]] <- merge_symdiff
binaryM[["R","setequal"]] <- function(x,y)setequal(x,x) # we compare x to x which avoids early termination and hence
binaryM[["bit","setequal"]] <- function(x,y)bit_setequal(x,x)
binaryM[["merge","setequal"]] <- function(x,y)merge_setequal(x,x)
binaryM[["R","setearly"]] <- function(x,y)setequal(x,y) # we compare x to x which avoids early termination and hence
binaryM[["bit","setearly"]] <- function(x,y)bit_setequal(x,y)
binaryM[["merge","setearly"]] <- function(x,y)merge_setequal(x,y)
unaryU <- c("unique","duplicated","anyDuplicated","sumDuplicated")
unaryM <- vector("list", length(M)*length(unaryU))
dim(unaryM) <- c(method=length(M), task=length(unaryU))
dimnames(unaryM) <- list(method=M, task=unaryU)
unaryM[["R","unique"]] <- unique
unaryM[["bit","unique"]] <- bit_unique
unaryM[["merge","unique"]] <- merge_unique
unaryM[["R","duplicated"]] <- duplicated
unaryM[["bit","duplicated"]] <- bit_duplicated
unaryM[["merge","duplicated"]] <- merge_duplicated
unaryM[["R","anyDuplicated"]] <- anyDuplicated
unaryM[["bit","anyDuplicated"]] <- bit_anyDuplicated
unaryM[["merge","anyDuplicated"]] <- merge_anyDuplicated
unaryM[["R","sumDuplicated"]] <- function(x)sum(duplicated(x))
unaryM[["bit","sumDuplicated"]] <- bit_sumDuplicated
unaryM[["merge","sumDuplicated"]] <- merge_sumDuplicated
tim <- array(NA_integer_
, dim=c(M=length(M), U=length(unaryU)+length(binaryU), N=length(binaryDomain), D=length(D))
, dimnames=list(M=M, U=c(unaryU,binaryU), N=names(binaryDomain), D=D)
)
for(n in names(binaryDomain)){
xnam <- names(binaryDomain[[n]])[1]
ynam <- names(binaryDomain[[n]])[2]
x <- sample(binaryDomain[[n]][1], binarySample[[n]][1], replace = FALSE)
y <- sample(binaryDomain[[n]][2], binarySample[[n]][2], replace = FALSE)
d <- "unsorted"
if (length(x)==length(y))
for (u in unaryU){
for (m in setdiff(M,"merge")){
f <- unaryM[[m,u]]
if (!is.null(f))
tim[m,u,n,d] <- median(microbenchmark(f(x), times=times)$time)
}
}
for (u in binaryU){
for (m in setdiff(M,"merge")){
f <- binaryM[[m,u]]
if (!is.null(f))
tim[m,u,n,d] <- median(microbenchmark(f(x,y), times=times)$time)
}
}
x <- bit_sort(x)
y <- bit_sort(y)
d <- "sorted"
if (length(x)==length(y))
for (u in unaryU){
for (m in M){
f <- unaryM[[m,u]]
if (!is.null(f)){
tim[m,u,n,d] <- median(microbenchmark(f(x), times=times)$time)
# now plug-in measures for unsorted merge
if (m == "merge")
tim["merge",u,n,"unsorted"] <- timsort["bit","sort","unsorted",xnam] + tim["merge",u,n,"sorted"]
}
}
}
for (u in binaryU){
for (m in M){
f <- binaryM[[m,u]]
if (!is.null(f)){
tim[m,u,n,d] <- median(microbenchmark(f(x,y), times=times)$time)
# now plug-in measures for unsorted merge
if (m == "merge")
tim["merge",u,n,"unsorted"] <- timsort["bit","sort","unsorted",xnam] + timsort["bit","sort","unsorted",ynam] + tim["merge",u,n,"sorted"]
}
}
}
}
```
```{r, echo=FALSE, fig.cap = "Execution time for R (R) and bit (b)"}
y <- timsort[,,,"big"]
y <- 100 * y / max(y["R",,], na.rm=TRUE)
oldpar <- par(mfrow=c(2,1), mar=c(5,8,2,1))
x <- y[,,"unsorted"]
dotchart(x, xlim=c(0, max(100, max(y))), labels="", pch=c("R","b"), xlab="execution time", main="unsorted", col=c("red","blue"))
x <- y[,,"sorted"]
dotchart(x, xlim=c(0, max(100, max(y))), labels="", pch=c("R","b"), xlab="execution time", main="sorted", col=c("red","blue"))
par(oldpar)
```
```{r, echo=FALSE, results='hide'}
tim2 <- tim
for (n in names(binaryDomain))
for (d in D)
tim2[,,n,d] <- 100*tim[,,n,d]/max(tim["R",,n,d], na.rm=TRUE)
```
`r pagebreak()`
```{r, echo=FALSE, fig.cap = "Execution time for R, bit and merge relative to most expensive R in 'unsorted bigbig' scenario"}
y <- tim2[,,"bigbig",]
y <- 100 * y / max(y["R",,], na.rm=TRUE)
x <- y[,,"unsorted"]
m <- rep("", ncol(x))
m <- as.vector(rbind(m, colnames(x), m))
dotchart(x, xlim=c(0, max(100,max(y, na.rm=TRUE))), labels=m, pch=c("R","b","m"), col=c("red","blue","black"), main="Timings in 'unsorted bigbig' scenario", sub="R='hash' b='bit' m='merge'")
```
```{r, echo=FALSE, fig.cap = "Execution time for R, bit and merge in 'sorted bigbig' scenario"}
x <- y[,,"sorted"]
dotchart(x, xlim=c(0, max(y, na.rm=TRUE)), labels=m, pch=c("R","b","m"), col=c("red","blue","black"), main="Timings in 'sorted bigbig' scenario", sub="R='hash' b='bit' m='merge'")
```
`r pagebreak()`
### % time for sorting
```{r, echo=FALSE, results='asis'}
x <- 100*timsort["bit",,,]/timsort["R",,,]
s <- "sorted"
knitr::kable(x[,s,], caption=paste(s,"data relative to R's sort"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,s,], caption=paste(s,"data relative to R's sort"), digits=1)
```
### % time for unique
```{r, echo=FALSE, results='asis'}
f <- function(u){
n <- c("smallsmall","bigbig")
x <- tim[c("bit","merge","merge"),u,n,]
dimnames(x)$M[3] <- "sort"
dimnames(x)$N <- c("small","big")
x["sort",,"unsorted"] <- timsort["bit","sort","unsorted",]
x["sort",,"sorted"] <- 0
for (m in dimnames(x)$M)
x[m,,] <- x[m,,] / tim["R",u,n,] * 100
x
}
x <- f("unique")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for duplicated
```{r, echo=FALSE, results='asis'}
x <- f("duplicated")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for anyDuplicated
```{r, echo=FALSE, results='asis'}
x <- f("anyDuplicated")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for sumDuplicated
```{r, echo=FALSE, results='asis'}
x <- f("sumDuplicated")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for match
```{r, echo=FALSE, results='asis'}
f <- function(u){
x <- tim[c("bit","merge","merge"),u,,]
dimnames(x)$M[3] <- "sort"
s <- timsort["bit","sort","unsorted",]
x["sort",,"unsorted"] <- rep(s, c(2,2)) + c(s,s)
x["sort",,"sorted"] <- 0
for (m in dimnames(x)$M)
x[m,,] <- x[m,,] / tim["R",u,,] * 100
x
}
x <- f("match")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for in
```{r, echo=FALSE, results='asis'}
x <- f("in")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for notin
```{r, echo=FALSE, results='asis'}
x <- f("notin")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for union
```{r, echo=FALSE, results='asis'}
x <- f("union")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for intersect
```{r, echo=FALSE, results='asis'}
x <- f("intersect")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for setdiff
```{r, echo=FALSE, results='asis'}
x <- f("setdiff")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for symdiff
```{r, echo=FALSE, results='asis'}
x <- f("symdiff")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for setequal
```{r, echo=FALSE, results='asis'}
x <- f("setequal")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
### % time for setearly
```{r, echo=FALSE, results='asis'}
x <- f("setearly")
s <- "sorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
```{r, echo=FALSE, results='asis'}
s <- "unsorted"
knitr::kable(x[,,s], caption=paste(s,"data relative to R"), digits=1)
```
|