1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
#' @encoding UTF-8
#' @title Function for extraction of some elements for objects, returend by functions for Generalized blockmodeling
#'
#' @description
#' Functions for extraction of partition (\code{clu}), all best partitions (\code{partitions}),
#' image or blockmodel (\code{IM})) and total error or inconsistency (\code{err}) for objects,
#' returned by functions \code{\link{critFunC}} or \code{\link{optRandomParC}}.
#'
# #' @usage clu(res, which = 1, ...)
# #' partitions(res)
# #' IM(res, which = 1, drop=TRUE, ...)
# #' EM(res, which = 1, drop=TRUE, ...)
# #' err(res, ...) partitions(res)#'
#'
#' @param res Result of function \code{\link{critFunC}} or \code{\link{optRandomParC}}.
#' @param which From \code{which} (if there are more than one) "best" solution should the
#' element be extracted. Warning! \code{which} grater than the number of "best" partitions
#' produces an error.
#' @param drop If \code{TRUE} (default), dimensions that have only one level are dropped
#' (\code{drop} function is applied to the final result).
#' @param \dots Not used.
#'
#'
#' @return The desired element.
#'
#'
#' @references
#' Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in the social sciences, 25). Cambridge [etc.]: Cambridge University Press.
#'
#' \enc{Žiberna, A.}{Ziberna, A.} (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1), 105-126. doi: 10.1016/j.socnet.2006.04.002
#'
#' \enc{Žiberna, A.}{Ziberna, A.} (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207
#'
#'
#' @author \enc{Aleš Žiberna}{Ales Ziberna}
#'
#'
#' @seealso \code{\link{critFunC}}, \code{\link{plot.mat}}, \code{\link{optRandomParC}}
#'
#'
#' @examples
#' n <- 8 # If larger, the number of partitions increases dramatically,
#' # as does if we increase the number of clusters
#' net <- matrix(NA, ncol = n, nrow = n)
#' clu <- rep(1:2, times = c(3, 5))
#' tclu <- table(clu)
#' net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
#' net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
#' net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
#' net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)
#'
#' # We select a random partition and then optimize it
#' all.par <- nkpartitions(n = n, k = length(tclu))
#' # Forming the partitions
#' all.par <- lapply(apply(all.par, 1, list),function(x) x[[1]])
#' # to make a list out of the matrix
#' res <- optParC(M = net,
#' clu = all.par[[sample(1:length(all.par), size = 1)]],
#' approaches = "hom", homFun = "ss", blocks = "com")
#' plot(res) # Hopefully we get the original partition
#' clu(res) # Hopefully we get the original partition
#' err(res) # Error
#' IM(res) # Image matrix/array.
#' EM(res) # Error matrix/array.
#'
#'
#' @keywords manip
#'
#' @export
"clu" <-
function(res,which=1,...){
if("clu" %in% names(res)){
res$clu
}else res$best[[which]]$clu
}
#' @rdname clu
#'
#' @export
"partitions" <-
function(res)lapply(res$best,function(x)x$clu)
#' @rdname clu
#'
#' @export
"err" <-
function(res,...){
if(is.null(res$best[[1]]$err)){
min(res$err)
}else res$best[[1]]$err
}
#' @rdname clu
#'
#' @export
"IM" <-
function(res,which=1, drop=TRUE, ...){
if(inherits(res,c("optMorePar","opt.more.par"))){
IM<-res$best[[which]]$IM
} else IM<-res$IM
if(drop)IM<-drop(IM)
return(IM)
}
#' @rdname clu
#'
#' @export
"EM" <-
function(res,which=1, drop=TRUE,...){
if(inherits(res,c("optMorePar","opt.more.par"))){
EM<-res$best[[which]]$EM
} else EM<-res$EM
if(drop)EM<-drop(EM)
return(EM)
}
|