File: plotMat.R

package info (click to toggle)
r-cran-blockmodeling 1.1.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 912 kB
  • sloc: ansic: 2,024; f90: 952; sh: 13; makefile: 5
file content (643 lines) | stat: -rw-r--r-- 34,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#' @encoding UTF-8
#' @title Functions for plotting a partitioned matrix (representing the network)
#' 
#' @description
#' The main function \code{plot.mat} or \code{plotMat} plots a (optionally partitioned) matrix.
#' If the matrix is partitioned, the rows and columns of the matrix are rearranged according to the partitions.
#' Other functions are only wrappers for \code{plot.mat} or \code{plotMat} for convenience when plotting the results of the corresponding functions.
#' The \code{plotMatNm} plots two matrices based on M, normalized by rows and columns, next to each other. The \code{plotArray} plots an array. \code{plot.mat.nm} has been replaced by \code{plotMatNm}.
#'
#' @param x A result from a corresponding function or a matrix or similar object representing a network.
#' @param clu A partition. Each unique value represents one cluster. If the network is one-mode,
#' then this should be a vector, else a list of vectors, one for each mode/set.
#' @param orderClu Should the partition be ordered before plotting. \code{FALSE} by default. If \code{TRUE}, \code{\link{orderClu}} is used (using default arguments) to order the clusters in a partition in "decreasing" (see \code{\link{orderClu}} for interpretation) order.
#' @param M A matrix or similar object representing a network - either \code{x} or \code{M} must be supplied - both are here to make the code compatible with generic and with older functions.
#' @param ylab Label for y axis.
#' @param xlab Label for x axis.
#' @param main Main title.
#' @param print.val Should the values be printed in the matrix.
#' @param print.0 If \code{print.val = TRUE} Should the 0s be printed in the matrix.
#' @param plot.legend Should the legend for shades be plotted.
#' @param print.legend.val Should the values be printed in the legend.
#' @param print.digits.legend The number of digits that should appear in the legend.
#' @param print.digits.cells The number of digits that should appear in the cells (of the matrix and/or legend).
#' @param print.cells.mf If not \code{NULL}, the above argument is ignored, the cell values are printed as the cell are multiplied by this factor and rounded.
#' @param outer.title Should the title be printed on the 'inner' or 'outer' margin of the plot, default is 'inner' margin.
#' @param title.line The line (from the top) where the title should be printed. The suitable values depend heavily on the displayed type.
#' @param mar A numerical vector of the form \code{c(bottom, left, top, right)} which gives the lines of margin to be specified on the four sides of the plot.
#' The R default for ordinary  plots is \code{c(5, 4, 4, 2) + 0.1}, while this function default is \code{c(0.5, 7, 8.5, 0) + 0.1}.
#' @param cex.val The size of the values printed. The default is \code{10 / 'number of units'}.
#' @param val.y.coor.cor Correction for centering the values in the squares in y direction.
#' @param val.x.coor.cor Correction for centering the values in the squares in x direction.
#' @param cex.legend Size of the text in the legend.
#' @param legend.title The title of the legend.
#' @param cex.axes Size of the characters in axes. Default makes the cex so small that all categories can be printed.
#' @param print.axes.val Should the axes values be printed. Default prints each axis if \code{rownames} or \code{colnames} is not \code{NULL}.
#' @param print.x.axis.val Should the x axis values be printed. Default prints each axis if \code{rownames} or \code{colnames} is not \code{NULL}.
#' @param print.y.axis.val Should the y axis values be printed. Default prints each axis if \code{rownames} or \code{colnames} is not \code{NULL}.
#' @param x.axis.val.pos The x coordinate of the y axis values.
#' @param y.axis.val.pos The y coordinate of the x axis values.
#' @param cex.main Size of the text in the main title.
#' @param cex.lab Size of the text in matrix.
#' @param yaxis.line The position of the y axis (the argument 'line').
#' @param xaxis.line The position of the x axis (the argument 'line').
#' @param legend.left How much left should the legend be from the matrix.
#' @param legend.up How much up should the legend be from the matrix.
#' @param legend.size Relative legend size.
#' @param legend.text.hor.pos Horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...
#' @param par.line.width The width of the line that separates  the partitions.
#' @param par.line.width.newSet The width of the line that separates  that separates the sets/modes - only used when \code{clu} is a list and \code{par.line.width} has length 1.
#' @param par.line.col The color of the line that separates the partitions.
#' @param par.line.col.newSet The color of the line that separates  that separates the sets/modes - only used when \code{clu} is a list and \code{par.line.col} has length 1.
#' @param IM.dens The density of shading lines in each block.
#' @param IM The image (as obtained  with \code{critFunC}) of the blockmodel. \code{dens.leg} is used to translate this image into \code{IM.dens}.
#' @param wnet Specifies which matrix (if more) should be plotted  - used if \code{M} is an array.
#' @param wIM Specifies which \code{IM} (if more) should be used for plotting. The default value is set to \code{wnet}) - used if \code{IM} is an array.
#' @param use.IM Specifies if \code{IM} should be used for plotting.
#' @param dens.leg It is used to translate the \code{IM} into \code{IM.dens}.
#' @param blackdens At which density should the values on dark colors  of lines be printed in white.
#' @param plotLines Should the lines in the matrix be printed. The default value is set to \code{FALSE}, best set to \code{TRUE} for very small networks.
#' @param frameMatrix Should the matrix be framed (if \code{plotLines} is \code{FALSE}). The default value is set to \code{TRUE}.
#' @param x0ParLine Coordinates for lines separating clusters.
#' @param x1ParLine Coordinates for lines separating clusters.
#' @param y0ParLine Coordinates for lines separating clusters.
#' @param y1ParLine Coordinates for lines separating clusters.
#' @param colByUnits Coloring units. It should be a vector of unit length.
#' @param colByRow Coloring units by rows. It should be a vector of unit length.
#' @param colByCol Coloring units by columns. It should be a vector of unit length.
#' @param mulCol Multiply color when joining with row, column. Only used when when \code{colByUnits} is not \code{NULL}.
#' @param joinColOperator Function to join \code{colByRow} and \code{colByCol}. The default value is set to \code{"+"}.
#' @param colTies If \code{TRUE}, ties are colored, if \code{FALSE}, 0-ties are colored.
#' @param maxValPlot The value to use as a maximum when computing colors (ties with maximal positive value are plotted  as black).
#' @param printMultipliedMessage Should the message '* all values in cells were multiplied by' be printed on the plot. The default value is set to \code{TRUE}.
#' @param replaceNAdiagWith0 If \code{replaceNAdiagWith0 = TRUE} Should the \code{NA} values on the diagonal of a matrix be replaced with 0s.
#' @param title.row Title for the row-normalized matrix in nm version
#' @param title.col Title for the column-normalized matrix in nm version
#' @param par.set A list of possible plotting parameters (to \code{par}) to be used in nm version
#' @param which Which (if there are more than one) of optimal solutions to plot.
#' @param colLabels Should the labels of units be colored. If \code{FALSE}, these are not colored, if \code{TRUE}, they are colored with colors of clusters as defined by palette.
#' This can be also a vector of colors (or integers) for one-mode networks or a list of two such vectors for two-mode networks.
#' @param MplotValues A matrix to strings to plot in cells. Only to be used if other values than those in the original matrix (\code{x} or \code{M} arguments) should be used. Defaults to \code{NULL}, in which case the valued from original matrix are plotted (if this is not prevented by some other arguments). Overrides all other arguments that deal with cell values (e.g. \code{print.digits.cells}). Sets \code{print.val} to \code{TRUE} and \code{plot.legend} to \code{FALSE}.
#' @param \dots Additional arguments to \code{plot.default} for \code{plotMat} and also to \code{plotMat} for other functions. 
#'
#' @return The functions are used for their side effect - plotting.
#' 
#' @references \enc{Žiberna, A.}{Ziberna, A.} (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1), 105-126. doi: 10.1016/j.socnet.2006.04.002
#' 
#' \enc{Žiberna, A.}{Ziberna, A.} (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207
#' 
#' @author \enc{Aleš Žiberna}{Ales Ziberna}
#' @seealso \code{\link{critFunC}}, \code{\link{optRandomParC}}
#' @keywords graphs hplot
#' 
#' @examples
#' # Generation of the network
#' n <- 20
#' net <- matrix(NA, ncol = n, nrow = n)
#' clu <- rep(1:2, times = c(5, 15))
#' tclu <- table(clu)
#' net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
#' net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
#' net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
#' net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)
#' 
#' # Ploting the network
#' plotMat(M = net, clu = clu, print.digits.cells = 3)
#' class(net) <- "mat"
#' plot(net, clu = clu)
#' # See corresponding functions for examples for other ploting
#' # functions
#' # presented, that are essentially only the wrappers for "plot.max"
#' @import Matrix
#' @import methods
#' @importFrom grDevices gray
#' @importFrom graphics mtext par plot.default rect segments text title
#' 
#' @export
 plotMat <- 
function(
   x=M, #x should be a matrix or similar object
    clu=NULL,   #partition
    orderClu=FALSE, #should the partition be ordered
    M=x, #M should be a matrix or similar object  - both (x and M) are here to make the code compatible with generic plot and with older versions of plot.mat and possibly some other functions in the package
    ylab="",
    xlab="",
    main=NULL,
    print.val=!length(table(M))<=2, #should the values be printed inside the cells
    print.0=FALSE,  #should the values equal to 0 be printed inside the cells, only used if 'print.val == TRUE'
    plot.legend=!print.val&&!length(table(M))<=2,   #should the legend for the colors be plotted
    print.legend.val="out", #where should the values for the legend be printed: 'out' - outside the cells (bellow), 'in' - inside the cells, 'both' - inside and outside the cells
    print.digits.legend=2,  #the number of digits that should appear in the legend
    print.digits.cells=2, #the number of digits that should appear in the cells (of the matrix and/or legend)
    print.cells.mf=NULL, #if not null, the above argument is ignored, the cell values are printed as the cell are multiplied by this factor and rounded
    outer.title=FALSE,  #should the title be printed on the 'inner' or 'outer' plot, default is 'inner' if legend is plotted and 'outer' otherwise
    title.line= ifelse(outer.title,-1.5,7), #the line (from the top) where the title should be printed
    mar= c(0.5, 7, 8.5, 0)+0.1, #A numerical vector of the form 'c(bottom, left, top, right)' which gives the lines of margin to be specified on the four sides of the plot. The default is 'c(5, 4, 4, 2) + 0.1'.
    cex.val="default",  #size of the values printed
    val.y.coor.cor = 0, #correction for centering the values in the sqares in y direction
    val.x.coor.cor = 0, #correction for centering the values in the sqares in x direction
    cex.legend=1,   #size of the text in the legend,
    legend.title="Legend",  #the title of the legend
    cex.axes="default", #size of the characters in axes, 'default' makes the cex so small that all categories can be printed
    print.axes.val=NULL,    #should the axes values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
    print.x.axis.val=!is.null(colnames(M)), #should the x axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
    print.y.axis.val=!is.null(rownames(M)), #should the y axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
    x.axis.val.pos = 1.01, #y coordinate of the x axis values
    y.axis.val.pos = -0.01,  #x coordinate of the y axis values
    cex.main=par()$cex.main,
    cex.lab=par()$cex.lab,
    yaxis.line=-1.5,    #the position of the y axis (the argument 'line')
    xaxis.line=-1,  #the position of the x axis (the argument 'line')
    legend.left=0.4,#how much left should the legend be from the matrix
    legend.up=0.03, #how much left should the legend be from the matrix
    legend.size=1/min(dim(M)),  #relative legend size
    legend.text.hor.pos=0.5,    #horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...
    par.line.width = 3, #the width of the line that separates the partitions
	par.line.width.newSet = par.line.width[1]*2, #the width of the line that separates the sets
    par.line.col = "blue", #the color of the line that separates the partitions
	par.line.col.newSet = "red", #the color of the line that separates the sets
    IM.dens= NULL,
    IM= NULL,   #Image used for plotting (shaded lines)
    wnet=NULL,      #which net (if more) should be plotted - used if M is an array
    wIM=NULL,   #which IM (if more) should be used for plotting (default = wnet) - used if IM is an array
    use.IM=length(dim(IM))==length(dim(M))|!is.null(wIM),   #should IM be used for plotting?
    dens.leg=c(null=100, nul=100),
    blackdens=70,
    plotLines = FALSE, #Should the lines in the matrix be printed (best set to FALSE for larger networks)
    frameMatrix=TRUE, #Should the matrix be framed (if plotLines is FALSE)
    x0ParLine=-0.1, #x coordinates for lines between row clusters
    x1ParLine=1, #x coordinates for lines between row clusters
    y0ParLine=0, #y coordinates for lines between col clusters
    y1ParLine=1.1, #y coordinates for lines between col clusters
	colByUnits=NULL, #a vector (of 0s and 1s) indicating whether ties of a unit should be marked with a diferent (nonblack) color - only used for binary networks 
	colByRow=NULL, #a vector (of 0s and 1s) indicating whether outgoing ties of a unit should be marked with a different (nonblack) color - only used for binary networks
	colByCol=NULL, #a vector (of 0s and 1s) indicating whether incoming ties of a unit should be marked with a different (nonblack) color - only used for binary networks
    mulCol = 2,
    joinColOperator = "+",
    colTies=FALSE,
    maxValPlot=NULL, # maximal value used for determining the color of cells in the plot. This value and all higher (in absolute terms) will produce a pure black/red color
	printMultipliedMessage = TRUE, # should multiplication message be printed when values were the printed tie values are multiplied
	replaceNAdiagWith0=TRUE, #Should the diagonal with only NAs be replace by 0s?
	colLabels=FALSE, # Should the labels of units be colored. If FALSE, these are not colored, if TRUE, they are colored with colors of clusters as defined by palette. This can be also a vector of colors (or integers) for one-mode networks or a list of two such vectors for two-mode networks.
	MplotValues=NULL, #a matrix of strings to plot into cells.
    ... #aditional arguments to plot.default
){
    old.mar<-par("mar")
    
    if(min(dim(M))==1 & is.null(wnet)) wnet<-1
    if(orderClu) {
      clu<-orderClu(M, clu=clu)
      ord<-order(attr(clu,"reorder"))
      if(!is.null(IM))if(length(dim(IM))==2){
        IM<-IM[ord,ord]
      } else if(length(dim(IM))==3){
        IM<-IM[,ord,ord]
      } else use.IM<-FALSE
    }
    tempClu<-clu
    

	
    if(length(dim(M))>2){
        if(!is.null(wnet)){
            relDim<-which.min(dim(M))
            if(relDim==1){
                M<-M[wnet,,]
            }else if(relDim==3){
                    M<-M[,,wnet]
            }else stop("More than 2 dimensions where relation dimension can not be determined")
            
            if(length(dim(IM))>length(dim(M))&use.IM){
              if(is.null(wIM))wIM<-wnet
              if(is.null(wIM)) wIM<-1
              if(length(dim(IM))==3) {
                IM<-IM[wIM,,]
              } else{
                warning("IM will not be used for plotting. Cannot be sure how to extract the appropirate part!")
                use.IM<-FALSE
              }
            }
        }else{
            plotArray(M = M,
                clu=tempClu,    #partition
                ylab=ylab,
                xlab=xlab,
                main.title=main,main.title.line=-2,
                print.val=print.val,    #should the values be printed inside the cells
                print.0=print.0,    #should the values equal to 0 be printed inside the cells, only used if 'print.val == TRUE'
                plot.legend=plot.legend,   #should the legend for the colors be plotted
                print.legend.val=print.legend.val,  #where should the values for the legend be printed: 'out' - outside the cells (bellow), 'in' - inside the cells, 'both' - inside and outside the cells
                print.digits.legend=print.digits.legend,    #the number of digits that should appear in the legend
                print.digits.cells=print.digits.cells, #the number of digits that should appear in the cells (of the matrix and/or legend)
                print.cells.mf=print.cells.mf, #if not null, the above argument is ignored, the cell values are printed as the cell are multiplied by this factor and rounded
                outer.title=outer.title,    #should the title be printed on the 'inner' or 'outer' plot, default is 'inner' if legend is plotted and 'outer' otherwise
                title.line= title.line, #the line (from the top) where the title should be printed
                mar= mar, #A numerical vector of the form 'c(bottom, left, top, right)' which gives the lines of margin to be specified on the four sides of the plot. The default is 'c(5, 4, 4, 2) + 0.1'.
                cex.val=cex.val,    #size of the values printed
                val.y.coor.cor = val.y.coor.cor, #correction for centering the values in the squares in y direction
                val.x.coor.cor = val.x.coor.cor, #correction for centering the values in the squares in x direction
                cex.legend=cex.legend,  #size of the text in the legend,
                legend.title=legend.title,  #the title of the legend
                cex.axes=cex.axes,  #size of the characters in axes, 'default' makes the cex so small that all categories can be printed
                print.axes.val=print.axes.val,  #should the axes values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
                print.x.axis.val=print.x.axis.val,  #should the x axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
                print.y.axis.val=print.y.axis.val,  #should the y axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
                x.axis.val.pos = x.axis.val.pos, #y coordinate of the x axis values
                y.axis.val.pos = y.axis.val.pos,  #x coordinate of the y axis values
                cex.main=cex.main,
                cex.lab=cex.lab,
                yaxis.line=yaxis.line,  #the position of the y axis (the argument 'line')
                xaxis.line=xaxis.line,  #the position of the x axis (the argument 'line')
                legend.left=legend.left,#how much left should the legend be from the matrix
                legend.up=legend.up,    #how much left should the legend be from the matrix
                legend.size=legend.size,    #relative legend size
                legend.text.hor.pos=legend.text.hor.pos,    #horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...
                par.line.width = par.line.width , #the width of the line that separates the partitions
				par.line.width.newSet = par.line.width.newSet, #the width of the line that separates the sets
                par.line.col = par.line.col, #the color of the line that separates the partitions
				par.line.col.newSet = par.line.col.newSet, #the color of the line that separates the sets				
                IM.dens= IM.dens,
                IM= IM, #Image used for plotting (shaded lines)
                wIM=wIM,    #which IM (if more) should be used for ploting (defualt = wnet) - used if IM is an array
                use.IM=use.IM,  #should IM be used for plotting?
                dens.leg=dens.leg,
                blackdens=blackdens,
                plotLines = plotLines,...
            )
            return(invisible(NULL))
        }
    }
    
    dm<-dim(M)

    if(!inherits(M, c("matrix","mat"))){
        pack<-attr(class(M),"package")
        if(!(is.null(pack))&&pack=="Matrix"){
            if(requireNamespace("Matrix")){
                M<-as.matrix(M)
            } else stop("The supplied object needs Matrix packege, but the package is not available (install it!!!).")
        } else {
            warning("Attempting to convert object of class ",class(M)," to class 'matrix'. Keep fingers crossed.")
            M<-as.matrix(M)
        }
    }
  
    if(replaceNAdiagWith0 & all(is.na(diag(M)))) diag(M)<-0

    if(is.null(main)){
        objName<-deparse(substitute(M))
        if(objName[1]=="x"){
                objName<-deparse(substitute(x))
        } 
        if(length(objName)>1)  objName=""
        main <- paste("Matrix",objName)
		if(nchar(main)>50) main<-substr(main,1,50)
    }
    #if(length(main)>26)

    if(is.logical(print.axes.val)){
        print.x.axis.val<-print.y.axis.val<-print.axes.val
    }


    #defining text on the axes if row or colnames do not exist
    if(is.null(rownames(M))){
        rownames(M)<-1:dm[1]
        }
    if(is.null(colnames(M))){
        colnames(M)<-1:dm[2]
    }
	
	newSetK<-0
    if(!is.null(clu)){  #is any clustering provided, ordering of the matrix if 'TRUE'
      if(is.list(clu)){
        clu<-lapply(clu,function(x)as.integer(as.factor(x)))
        tmNclu<-sapply(clu,max)
        for(iMode in 2:length(tmNclu)){
          clu[[iMode ]]<-clu[[iMode ]]+sum(tmNclu[1:(iMode -1)])
        }
        unlistClu<-unlist(clu)
        if( all(length(unlistClu)==dm)){
			clu<-unlistClu
			newSetK<-cumsum(tmNclu[-length(tmNclu)])
		}
      }
        if(!is.list(clu)){
            tclu<-table(clu)
            or.c<-or.r<-order(clu)
            clu<-list(clu,clu)
            lines.col<-cumsum(tclu)[-length(tclu)]*1/dm[2]
            lines.row<-1-lines.col
        }else if(is.list(clu)&&length(clu)==2){
			if(!is.null(clu[[1]])){
				tclu.r<-table(clu[[1]])
				or.r<-order(clu[[1]])
				lines.row<- 1-cumsum(tclu.r)[-length(tclu.r)]*1/dm[1]
			} else{
				or.r<-1:dim(M)[1]
				lines.row<-NULL
			}
			if(!is.null(clu[[2]])){
				tclu.c<-table(clu[[2]])
				or.c<-order(clu[[2]])
				lines.col<-cumsum(tclu.c)[-length(tclu.c)]*1/dm[2]
			} else{
				or.c<-1:dim(M)[2]
				lines.col<-NULL
			}            
            
        } else stop("Networks with more that 2 modes (ways) must convert to 1-mode networks before it is sent to this function.")
        M<-M[or.r,or.c]
    clu<-lapply(clu,function(x)as.numeric(factor(x)))
    }



  if(is.null(IM.dens)){
    if(!is.null(IM)&use.IM){
      IM.dens<-matrix(-1,ncol=dim(IM)[2],nrow=dim(IM)[1])
      for(i in names(dens.leg)){
        IM.dens[IM==i]<- dens.leg[i]
      }
    }
  }


  if(!is.null(IM.dens)){
      dens<-matrix(-1,nrow=dm[1], ncol=dm[2])
    for(i in unique(clu[[1]])){
      for(j in unique(clu[[2]])){
        dens[clu[[1]]==i,clu[[2]]==j]<-IM.dens[i,j]
      }
    }
    dens<-dens[or.r,or.c]
  }

	if(length(cex.axes)==1) cex.axes<-c(cex.axes,cex.axes)
    if(cex.axes[1]=="default"){    #defining the size of text on the axes
        cex.y.axis<-min(15/dm[1],1)
    }else{
        cex.y.axis<-cex.axes[1]
    }
    if(cex.axes[2]=="default"){    #defining the size of text on the axes
        cex.x.axis<-min(15/dm[2],1)
    }else{
        cex.x.axis<-cex.axes[2]
    }

    #defining text on the axes
    yaxe<-rownames(M)
    xaxe<-colnames(M)


    ytop <- rep(x=(dm[1]:1)/dm[1],times=dm[2])  #defining the positions of rectangles
    ybottom<- ytop - 1/dm[1]
    xright <- rep(x=(1:dm[2])/dm[2],each=dm[1])
    xleft <- xright - 1/dm[2]
  
   if(all(M %in% c(0,1))){
#       browser()
            mulCol<-mulCol
        if(is.null(colByRow)&is.null(colByCol)) {
            colByRow<-colByCol<-colByUnits
        } else {
            if(is.null(colByRow)){
                colByRow<-rep(0, length(colByCol))
                mulCol<-1
            }
            if(is.null(colByCol)){
                colByCol<-rep(0, length(colByRow))
            }
            colByUnits<-TRUE
        }
        
        col<-M
        if(all(col %in% c(0,1))& (!is.null(colByUnits))){
            newCol<-outer(colByRow,colByCol*mulCol,FUN=joinColOperator)
            if(!is.null(clu)) newCol<-newCol[or.r,or.c]
            if(colTies){
                col[M>0]<-col[M>0]+newCol[M>0]
            }else{
                newCol[newCol>0]<-newCol[newCol>0]+1
                col[M==0]<-col[M==0]+newCol[M==0]
            }
        }        
    } else {
        aM<-abs(M)
        if(!is.null(maxValPlot)){
          aM[aM>maxValPlot]<-maxValPlot
        }
        max.aM<-max(aM)
        aMnorm<-as.vector(aM)/max.aM
        if(max.aM!=0){
            col<-gray(1-aMnorm)   #definin the color of rectangles
        }else col<-matrix(gray(1),nrow=dm[1],ncol=dm[2])
        col[M<0]<-paste("#FF",substr(col[M<0],start=4,stop=7),sep="")
    }

    asp<-dm[1]/dm[2]    #making sure that the cells are squares	
	
	if(!(plotLines)){
		plotRect<-rep(TRUE,length(col))
		if(is.integer(col)){
			plotRect[col==0]<-FALSE
		}else{
			plotRect[col=="white"]<-FALSE
			plotRect[col=="transparent"]<-FALSE
			plotRect[grep(pattern = "^#......00$",x=col)]<-FALSE
		}
		
	}
	
    par(mar=mar, xpd=NA)    #ploting
    plot.default(c(0,1),c(0,1),type="n",axes=FALSE,ann=FALSE,xaxs="i",asp=asp,...)
  if(is.null(IM.dens)||all(IM.dens==-1)){
    rect(xleft=xleft[plotRect], ybottom=ybottom[plotRect], xright=xright[plotRect], ytop=ytop[plotRect], col=col[plotRect],cex.lab=cex.lab,border=if(plotLines)"black" else NA)
  }else{
    rect(xleft=xleft[plotRect], ybottom=ybottom[plotRect], xright=xright[plotRect], ytop=ytop[plotRect], col=col[plotRect],cex.lab=cex.lab,density=dens[plotRect],border=if(plotLines)"black" else NA)
  } 
  
  if(newSetK[1]!=0 && length(par.line.col)==1) {
    par.line.col<-rep(par.line.col, length(lines.row))
	par.line.col[newSetK]<-par.line.col.newSet
  }
  if(newSetK[1]!=0 && length(par.line.width)==1){
	par.line.width<-rep(par.line.width, length(lines.row))
	par.line.width[newSetK]<-par.line.width.newSet
  }
  if(frameMatrix) rect(xleft=0, ybottom=0, xright=1, ytop=1, cex.lab=cex.lab,border="black")
    if(!is.null(clu)){  #ploting the lines between clusters
        if(length(lines.row)>0) segments(x0=x0ParLine,x1=x1ParLine,y0=lines.row,y1=lines.row,col=par.line.col,lwd=par.line.width)
        if(length(lines.col)>0) segments(y0=y0ParLine,y1=y1ParLine,x0=lines.col,x1=lines.col,col=par.line.col,lwd=par.line.width )
    }
	
	colYlabels <- colXlabels <- 1
	if((length(colLabels)==1)&&is.logical(colLabels)){
		if(colLabels){
			if(is.null(clu)){
				warning("clu not used!")
			} else {
				colYlabels <- clu[[1]]
				colXlabels <- clu[[2]]
			}
		} 
	} else{
		if(!is.list(colLabels))colLabels<-list(colLabels,colLabels)
		if(length(colLabels[[1]])==dm[1]){
			colYlabels<-colLabels[[1]]
		} else {
			warning("colLabels for first dimmension of wrong length, no colors will be used!")
		}
		if(length(colLabels[[2]])==dm[2]){
			colXlabels<-colLabels[[2]]
		} else {
			warning("colLabels for second dimmension of wrong length, no colors will be used!")
		}	
	}		
	if(!is.null(clu)){
		if(length(colXlabels)>1) colXlabels<-colXlabels[or.c]
		if(length(colYlabels)>1) colYlabels<-colYlabels[or.r]
	}
	
    if(print.y.axis.val) text(x=y.axis.val.pos, y = (dm[1]:1)/dm[1]-1/dm[1]/2 +val.y.coor.cor,labels = yaxe,cex=cex.y.axis,adj=1, col=colYlabels)
    if(print.x.axis.val) text(y=x.axis.val.pos, x = (1:dm[2])/dm[2]-1/dm[2]/2 +val.x.coor.cor, srt=90, labels = xaxe, cex=cex.x.axis,adj=0, col=colXlabels)
    title(outer=outer.title,ylab=ylab,xlab=xlab,main=main, line=title.line,cex.main=cex.main)
    if(!is.null(MplotValues)){
      if(dim(MplotValues)==dim(M)&&is.character(MplotValues)){
        plot.legend<-FALSE
      } else warning("MplotValues is ignored. It should be the same dimension as the main matrix (x or M) and be a character")
    }
    if(print.val|(!is.null(MplotValues))){  #ploting the values in the cells if selected
        norm.val<-as.vector(M)/max(abs(M))
        aMnorm<-abs(norm.val)
        col.text<-1-round(aMnorm)

        if(!print.0) col.text[as.vector(M)==0]<-0

        if(length(table(col.text))==2) {
            col.labels<-c("white","black")
        } else col.labels<-c("white")

        col.text<-as.character(factor(col.text,labels=col.labels))
    if(!is.null(IM.dens)&&!all(IM.dens==-1)) col.text[col.text=="white"&dens>0&dens<blackdens]<-"black"

        col.text[col.text=="black"&norm.val<0]<-"red"
        if(!print.0) col.text[as.vector(M)==0]<-"transparent"
		
		if(is.null(MplotValues)){
			maxM<-formatC(max(abs(M)),format="e")
			if(is.null(print.cells.mf)){
				if(all(trunc(M)==M)& max(M)<10^print.digits.cells){
					multi<-1
				}else{
					multi<-floor(log10(max(M)))
					multi<-(multi-(print.digits.cells - 1))*(-1)
					multi<-10^multi
				}
			}else multi <- print.cells.mf
			
			MplotValues<-round(M*multi)
			if(multi!=1 & printMultipliedMessage) mtext(text=paste("* all values in cells were multiplied by ",multi,sep=""),side=1, line=-0.7,cex=0.70)
		}
    }
    
    if(!is.null(MplotValues)) text(x=(xleft+xright)/2+val.x.coor.cor,y=(ytop+ybottom)/2+val.y.coor.cor, labels=as.vector(MplotValues),col=col.text,cex=ifelse(cex.val=="default",min(10/max(dm),1),cex.val))

    if(plot.legend){    #ploting the legend if selected
        if(asp>=1){
            xright.legend<- -legend.left
            xleft.legend <- xright.legend - 1*legend.size*asp
            ybottom.legend <- 1+(4:0)*legend.size+ legend.up
            ytop.legend <- ybottom.legend + 1*legend.size
        }else{
            xright.legend<- -legend.left
            xleft.legend <- xright.legend - 1*legend.size
            ybottom.legend <- 1+(4:0)*legend.size*asp+ legend.up
            ytop.legend <- ybottom.legend + 1*legend.size*asp
        }
        col.legend<-gray(4:0/4)
        rect(xleft=xleft.legend, ybottom=ybottom.legend, xright=xright.legend, ytop=ytop.legend, col=col.legend)
        if(print.legend.val=="out"|print.legend.val=="both") text(x=xright.legend + 1/20,y= (ytop.legend+ybottom.legend)/2, labels=formatC(0:4/4*max(M), digits = print.digits.legend,format="g"),adj=0,cex=cex.legend)
        text(x=xleft.legend,y=ytop.legend[1] + legend.size/asp/2+0.02, labels=legend.title,font=2,cex=cex.legend,adj=0)

        if(print.legend.val=="in"|print.legend.val=="both"){
            col.text.legend<-round(4:0/4)
            if(!print.0) col.text.legend[1]<-0
            col.text.legend<-as.character(factor(col.text.legend,labels=c("white","black")))
            if(!print.val){
                if(is.null(print.cells.mf)){
                    if(all(trunc(M)==M)& max(M)<10^print.digits.cells){
                        multi<-1
                    }else{
                        multi<-floor(log10(max(M)))
                        multi<-(multi-(print.digits.cells - 1))*(-1)
                        multi<-10^multi
                    }
                }else multi <- print.cells.mf
                maxM<-round(max(M)*multi)
            } else maxM<-max(MplotValues)
            text(x=(xleft.legend+xright.legend)/2,y=(ytop.legend+ybottom.legend)/2, labels=round(0:4/4*maxM),col=col.text.legend,cex=cex.legend)
        }
    }

    par(mar=old.mar)
}


#' @rdname plotMat
#'
#' @param main.title Main title in \code{plotArray} version.
#' @param main.title.line The line in which main title is printed in \code{plotArray} version.
#' @param mfrow \code{mfrow} Argument to \code{par} - number of row and column plots to be plotted on one figure.
#' 
#' @export
plotArray <- 
function(
    x=M, #x should be a matrix or similar object
    M=x, #M should be a matrix or similar object - both (x and M) are here to make the code compatible with generic plot and with older versions of plot.mat and possbily some other functions in the package
    IM=NULL, #the image to be used for plotting
    ...,    #aditional arguments to plot.mat
    main.title=NULL,main.title.line=-2,mfrow=NULL
){
    if(is.null(main.title)){
        objName<-deparse(substitute(M))
        if(objName=="x")objName<-deparse(substitute(x))
        main.title <- paste("Matrix",objName)
		if(nchar(main.title)>50) main.title<-substr(main.title,1,50)
    }
    dM<-dim(M)
    relDim<-which.min(dM)
    nDim<-dM[relDim]
    if(is.null(mfrow)|(prod(mfrow)<nDim)){
        if(nDim<4){
            mfrow<-c(1,nDim)
        } else if(nDim<6){
            mfrow<-c(2,ceiling(nDim/2))
        } else{
            nr<-round(sqrt(nDim/6)*2); nc<-ceiling(nDim/nr)
            mfrow<-c(nr,nc)
        }           
    }
    par.def<-par(no.readonly = TRUE) 
    par(mfrow=mfrow)
    
    relNames<-dimnames(M)[[relDim]]
    if(is.null(relNames)) relNames<-1:nDim
    for(i in 1:nDim){
    #for(iName in relNames) 
        iName<-relNames[i]
        if(relDim==1){
            plotMat(M[iName,,],main=iName, IM=IM[i,,],...)
        } else if(relDim==3) plot.mat(M[,,iName],main=iName, IM=IM[i,,],...)
    }
    
    title(main=main.title,outer=TRUE,line=main.title.line)
    par(par.def)
}

#' @rdname plotMat
#' @export plot.mat
#' @export
plot.mat <- plotMat