File: theorem-proof-engine.Rmd

package info (click to toggle)
r-cran-bookdown 0.42%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,752 kB
  • sloc: javascript: 11,343; makefile: 21; sh: 20
file content (100 lines) | stat: -rw-r--r-- 3,738 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
title: "Theorem and Proof env using R engine"
documentclass: book
output: 
  bookdown::pdf_document2:
    keep_tex: true
  bookdown::html_document2: default
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

# Examples

```{definition}
The characteristic function of a random variable $X$ is defined by

$$\varphi _{X}(t)=\operatorname {E} \left[e^{itX}\right], \; t\in\mathcal{R}$$
```


```{example}
We derive the characteristic function of $X\sim U(0,1)$ with the probability density function $f(x)=\mathbf{1}_{x \in [0,1]}$.

\begin{equation*}
\begin{split}
\varphi _{X}(t) &= \operatorname {E} \left[e^{itX}\right]\\
 & =\int e^{itx}f(x)dx\\
 & =\int_{0}^{1}e^{itx}dx\\
 & =\int_{0}^{1}\left(\cos(tx)+i\sin(tx)\right)dx\\
 & =\left.\left(\frac{\sin(tx)}{t}-i\frac{\cos(tx)}{t}\right)\right|_{0}^{1}\\
 & =\frac{\sin(t)}{t}-i\left(\frac{\cos(t)-1}{t}\right)\\
 & =\frac{i\sin(t)}{it}+\frac{\cos(t)-1}{it}\\
 & =\frac{e^{it}-1}{it}
\end{split}
\end{equation*}

Note that we used the fact $e^{ix}=\cos(x)+i\sin(x)$ twice.
```

```{lemma, chf-pdf}
For any two random variables $X_1$, $X_2$, they both have the same probability distribution if and only if

$$\varphi _{X_1}(t)=\varphi _{X_2}(t)$$
```

```{theorem, chf-sum}
If $X_1$, ..., $X_n$ are independent random variables, and $a_1$, ..., $a_n$ are some constants, then the characteristic function of the linear combination $S_n=\sum_{i=1}^na_iX_i$ is

$$\varphi _{S_{n}}(t)=\prod_{i=1}^n\varphi _{X_i}(a_{i}t)=\varphi _{X_{1}}(a_{1}t)\cdots \varphi _{X_{n}}(a_{n}t)$$
```

```{proposition}
The distribution of the sum of independent Poisson random variables $X_i \sim \mathrm{Pois}(\lambda_i),\: i=1,2,\cdots,n$ is $\mathrm{Pois}(\sum_{i=1}^n\lambda_i)$.
```

```{proof}
The characteristic function of $X\sim\mathrm{Pois}(\lambda)$ is $\varphi _{X}(t)=e^{\lambda (e^{it}-1)}$. Let $P_n=\sum_{i=1}^nX_i$. We know from Theorem \@ref(thm:chf-sum) that

\begin{equation*}
\begin{split}
\varphi _{P_{n}}(t) & =\prod_{i=1}^n\varphi _{X_i}(t) \\
& =\prod_{i=1}^n e^{\lambda_i (e^{it}-1)} \\
& = e^{\sum_{i=1}^n \lambda_i (e^{it}-1)}
\end{split}
\end{equation*}

This is the characteristic function of a Poisson random variable with the parameter $\lambda=\sum_{i=1}^n \lambda_i$. From Lemma \@ref(lem:chf-pdf), we know the distribution of $P_n$ is $\mathrm{Pois}(\sum_{i=1}^n\lambda_i)$.
```

```{remark}
In some cases, it is very convenient and easy to figure out the distribution of the sum of independent random variables using characteristic functions.
```

```{corollary}
The characteristic function of the sum of two independent random variables $X_1$ and $X_2$ is the product of characteristic functions of $X_1$ and $X_2$, i.e.,

$$\varphi _{X_1+X_2}(t)=\varphi _{X_1}(t) \varphi _{X_2}(t)$$
```

```{exercise, name="Characteristic Function of the Sample Mean"}
Let $\bar{X}=\sum_{i=1}^n \frac{1}{n} X_i$ be the sample mean of $n$ independent and identically distributed random variables, each with characteristic function $\varphi _{X}$. Compute the characteristic function of $\bar{X}$. 
```

```{solution}
Applying Theorem \@ref(thm:chf-sum), we have

$$\varphi _{\bar{X}}(t)=\prod_{i=1}^n \varphi _{X_i}\left(\frac{t}{n}\right)=\left[\varphi _{X}\left(\frac{t}{n}\right)\right]^n.$$
```
  
```{hypothesis, name="Riemann hypothesis"}
The Riemann Zeta-function is defined as
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
for complex values of $s$ and which converges when the real part of $s$ is greater than 1. The Riemann hypothesis is that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $1/2$.
```

# Referencing 

You can see Theorem \@ref(thm:chf-sum) and Lemma \@ref(lem:chf-pdf)