1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
---
title: "Theorem and Proof env using Pandoc's fenced div"
documentclass: book
output:
bookdown::pdf_document2:
keep_tex: true
bookdown::html_document2: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Examples
::: {.definition}
The **characteristic** function of a random variable $X$ is defined by
$$\varphi _{X}(t)=\operatorname {E} \left[e^{itX}\right], \; t\in\mathcal{R}$$
:::
::: {.example}
We derive the characteristic function of $X\sim U(0,1)$ with the probability density function $f(x)=\mathbf{1}_{x \in [0,1]}$.
\begin{equation*}
\begin{split}
\varphi _{X}(t) &= \operatorname {E} \left[e^{itX}\right]\\
& =\int e^{itx}f(x)dx\\
& =\int_{0}^{1}e^{itx}dx\\
& =\int_{0}^{1}\left(\cos(tx)+i\sin(tx)\right)dx\\
& =\left.\left(\frac{\sin(tx)}{t}-i\frac{\cos(tx)}{t}\right)\right|_{0}^{1}\\
& =\frac{\sin(t)}{t}-i\left(\frac{\cos(t)-1}{t}\right)\\
& =\frac{i\sin(t)}{it}+\frac{\cos(t)-1}{it}\\
& =\frac{e^{it}-1}{it}
\end{split}
\end{equation*}
Note that we used the fact $e^{ix}=\cos(x)+i\sin(x)$ twice.
:::
::: {.lemma #chf-pdf}
For any two random variables $X_1$, $X_2$, they both have the same probability distribution if and only if
$$\varphi _{X_1}(t)=\varphi _{X_2}(t)$$
:::
::: {.theorem #chf-sum}
If $X_1$, ..., $X_n$ are independent random variables, and $a_1$, ..., $a_n$ are some constants, then the characteristic function of the linear combination $S_n=\sum_{i=1}^na_iX_i$ is
$$\varphi _{S_{n}}(t)=\prod_{i=1}^n\varphi _{X_i}(a_{i}t)=\varphi _{X_{1}}(a_{1}t)\cdots \varphi _{X_{n}}(a_{n}t)$$
:::
::: {.proposition}
The distribution of the sum of independent Poisson random variables $X_i \sim \mathrm{Pois}(\lambda_i),\: i=1,2,\cdots,n$ is $\mathrm{Pois}(\sum_{i=1}^n\lambda_i)$.
:::
::: {.proof}
The characteristic function of $X\sim\mathrm{Pois}(\lambda)$ is $\varphi _{X}(t)=e^{\lambda (e^{it}-1)}$. Let $P_n=\sum_{i=1}^nX_i$. We know from Theorem \@ref(thm:chf-sum) that
\begin{equation*}
\begin{split}
\varphi _{P_{n}}(t) & =\prod_{i=1}^n\varphi _{X_i}(t) \\
& =\prod_{i=1}^n e^{\lambda_i (e^{it}-1)} \\
& = e^{\sum_{i=1}^n \lambda_i (e^{it}-1)}
\end{split}
\end{equation*}
This is the characteristic function of a Poisson random variable with the parameter $\lambda=\sum_{i=1}^n \lambda_i$. From Lemma \@ref(lem:chf-pdf), we know the distribution of $P_n$ is $\mathrm{Pois}(\sum_{i=1}^n\lambda_i)$.
:::
::: {.remark}
In some cases, it is very convenient and easy to figure out the distribution of the sum of independent random variables using characteristic functions.
:::
::: {.corollary}
The characteristic function of the sum of two independent random variables $X_1$ and $X_2$ is the product of characteristic functions of $X_1$ and $X_2$, i.e.,
$$\varphi _{X_1+X_2}(t)=\varphi _{X_1}(t) \varphi _{X_2}(t)$$
:::
::: {.exercise name="Characteristic Function of the Sample Mean"}
Let $\bar{X}=\sum_{i=1}^n \frac{1}{n} X_i$ be the sample mean of $n$ independent and identically distributed random variables, each with characteristic function $\varphi _{X}$. Compute the characteristic function of $\bar{X}$.
:::
::: {.solution}
Applying Theorem \@ref(thm:chf-sum), we have
$$\varphi _{\bar{X}}(t)=\prod_{i=1}^n \varphi _{X_i}\left(\frac{t}{n}\right)=\left[\varphi _{X}\left(\frac{t}{n}\right)\right]^n.$$
:::
::: {.hypothesis name="Riemann hypothesis"}
The Riemann Zeta-function is defined as
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
for complex values of $s$ and which converges when the real part of $s$ is greater than 1. The Riemann hypothesis is that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $1/2$.
:::
# Referencing
You can see Theorem \@ref(thm:chf-sum) and Lemma \@ref(lem:chf-pdf)
# Special features
Containing Markdown syntax
::: solution
`code`
:::
::: lemma
**bold** and *emph*
:::
```{asis, echo = knitr::is_latex_output()}
:::theorem
\textbf{bold in latex}
:::
```
```{asis, echo = knitr::is_html_output()}
:::theorem
<strong>bold in html</strong>
:::
```
::: {#exr-1 .exercise}
1) Open RStudio.
2) Write `1 + 9` to console.
:::
::: {.exercise}
Do this:
1) Open RStudio.
2) Write `1 + 9` to console.
:::
::: {.exercise}
```r
library(knitr)
kable(mtcars)
```
Copy and paste the chunk above
:::
::: {.solution #sol-2}
Copy and paste the chunk below
```r
library(knitr)
kable(mtcars)
```
:::
|