1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
#' Specify a Generalised Davidson Term in a gnm Model Formula
#'
#' GenDavidson is a function of class `"nonlin"` to specify a generalised
#' Davidson term in the formula argument to [gnm::gnm()], providing a
#' model for paired comparison data where ties are a possible outcome.
#'
#' `GenDavidson` specifies a generalisation of the Davidson model (1970)
#' for paired comparisons where a tie is a possible outcome. It is designed for
#' modelling trinomial counts corresponding to the win/draw/loss outcome for
#' each contest, which are assumed Poisson conditional on the total count for
#' each match. Since this total must be one, the expected counts are
#' equivalently the probabilities for each possible outcome, which are modelled
#' on the log scale: \deqn{\log(p(i \textrm{beats} j)_k) = \theta_{ijk} +
#' \log(\mu\alpha_i}{log(p(i beats j)_k) = theta_{ijk} + log(mu * alpha_i)}
#' \deqn{\log(p(draw)_k) = \theta_{ijk} + \delta + c + }{ log(p(draw)_k) =
#' theta_{ijk} + log(delta) + c + sigma * (pi * log(mu * alpha_i) + (1 - pi) *
#' log(alpha_j)) + (1 - sigma) * log(mu * alpha_i + alpha_j) }\deqn{
#' \sigma(\pi\log(\mu\alpha_i) - (1 - \pi)log(\alpha_j)) + }{ log(p(draw)_k) =
#' theta_{ijk} + log(delta) + c + sigma * (pi * log(mu * alpha_i) + (1 - pi) *
#' log(alpha_j)) + (1 - sigma) * log(mu * alpha_i + alpha_j) }\deqn{ (1 -
#' \sigma)(\log(\mu\alpha_i + \alpha_j))}{ log(p(draw)_k) = theta_{ijk} +
#' log(delta) + c + sigma * (pi * log(mu * alpha_i) + (1 - pi) * log(alpha_j))
#' + (1 - sigma) * log(mu * alpha_i + alpha_j) } \deqn{\log(p(j \textrm{beats}
#' i)_k) = \theta_{ijk} + }{log(p(j beats i)_k) = theta_{ijk} +
#' log(alpha_j)}\deqn{ log(\alpha_j)}{log(p(j beats i)_k) = theta_{ijk} +
#' log(alpha_j)} Here \eqn{\theta_{ijk}}{theta_{ijk}} is a structural parameter
#' to fix the trinomial totals; \eqn{\mu}{mu} is the home advantage parameter;
#' \eqn{\alpha_i}{alpha_i} and \eqn{\alpha_j}{alpha_j} are the abilities of
#' players \eqn{i} and \eqn{j} respectively; \eqn{c}{c} is a function of the
#' parameters such that \eqn{\textrm{expit}(\delta)}{plogis(delta)} is the
#' maximum probability of a tie, \eqn{\sigma}{sigma} scales the dependence of
#' the probability of a tie on the relative abilities and \eqn{\pi}{pi} allows
#' for asymmetry in this dependence.
#'
#' For parameters that must be positive (\eqn{\alpha_i, \sigma, \mu}{alpha,
#' sigma, mu}), the log is estimated, while for parameters that must be between
#' zero and one (\eqn{\delta, \pi}), the logit is estimated, as illustrated in
#' the example.
#'
#' @param win a logical vector: `TRUE` if player1 wins, `FALSE`
#' otherwise.
#' @param tie a logical vector: `TRUE` if the outcome is a tie,
#' `FALSE` otherwise.
#' @param loss a logical vector: `TRUE` if player1 loses, `FALSE`
#' otherwise.
#' @param player1 an ID factor specifying the first player in each contest,
#' with the same set of levels as `player2`.
#' @param player2 an ID factor specifying the second player in each contest,
#' with the same set of levels as `player2`.
#' @param home.adv a formula for the parameter corresponding to the home
#' advantage effect. If `NULL`, no home advantage effect is estimated.
#' @param tie.max a formula for the parameter corresponding to the maximum tie
#' probability.
#' @param tie.scale a formula for the parameter corresponding to the scale of
#' dependence of the tie probability on the probability that `player1`
#' wins, given the outcome is not a draw.
#' @param tie.mode a formula for the parameter corresponding to the location of
#' maximum tie probability, in terms of the probability that `player1`
#' wins, given the outcome is not a draw.
#' @param at.home1 a logical vector: `TRUE` if `player1` is at home,
#' `FALSE` otherwise.
#' @param at.home2 a logical vector: `TRUE` if `player2` is at home,
#' `FALSE` otherwise.
#' @return A list with the anticipated components of a "nonlin" function:
#' \item{ predictors }{ the formulae for the different parameters and the ID
#' factors for player 1 and player 2. } \item{ variables }{ the outcome
#' variables and the \dQuote{at home} variables, if specified. } \item{ common
#' }{ an index to specify that common effects are to be estimated for the
#' players. } \item{ term }{ a function to create a deparsed mathematical
#' expression of the term, given labels for the predictors.} \item{ start }{ a
#' function to generate starting values for the parameters.}
#' @author Heather Turner
#' @seealso [football()], [plotProportions()]
#' @references Davidson, R. R. (1970). On extending the Bradley-Terry model to
#' accommodate ties in paired comparison experiments. *Journal of the
#' American Statistical Association*, **65**, 317--328.
#' @keywords models nonlinear
#' @examples
#'
#' ### example requires gnm
#' if (require(gnm)) {
#' ### convert to trinomial counts
#' football.tri <- expandCategorical(football, "result", idvar = "match")
#' head(football.tri)
#'
#' ### add variable to indicate whether team playing at home
#' football.tri$at.home <- !logical(nrow(football.tri))
#'
#' ### fit shifted & scaled Davidson model
#' ### - subset to first and last season for illustration
#' shifScalDav <- gnm(count ~
#' GenDavidson(result == 1, result == 0, result == -1,
#' home:season, away:season, home.adv = ~1,
#' tie.max = ~1, tie.scale = ~1, tie.mode = ~1,
#' at.home1 = at.home,
#' at.home2 = !at.home) - 1,
#' eliminate = match, family = poisson, data = football.tri,
#' subset = season %in% c("2008-9", "2012-13"))
#'
#' ### look at coefs
#' coef <- coef(shifScalDav)
#' ## home advantage
#' exp(coef["home.adv"])
#' ## max p(tie)
#' plogis(coef["tie.max"])
#' ## mode p(tie)
#' plogis(coef["tie.mode"])
#' ## scale relative to Davidson of dependence of p(tie) on p(win|not a draw)
#' exp(coef["tie.scale"])
#'
#' ### check model fit
#' alpha <- names(coef[-(1:4)])
#' plotProportions(result == 1, result == 0, result == -1,
#' home:season, away:season,
#' abilities = coef[alpha], home.adv = coef["home.adv"],
#' tie.max = coef["tie.max"], tie.scale = coef["tie.scale"],
#' tie.mode = coef["tie.mode"],
#' at.home1 = at.home, at.home2 = !at.home,
#' data = football.tri, subset = count == 1)
#' }
#'
#' ### analyse all five seasons
#' ### - takes a little while to run, particularly likelihood ratio tests
#' \dontrun{
#' ### fit Davidson model
#' Dav <- gnm(count ~ GenDavidson(result == 1, result == 0, result == -1,
#' home:season, away:season, home.adv = ~1,
#' tie.max = ~1,
#' at.home1 = at.home,
#' at.home2 = !at.home) - 1,
#' eliminate = match, family = poisson, data = football.tri)
#'
#' ### fit scaled Davidson model
#' scalDav <- gnm(count ~ GenDavidson(result == 1, result == 0, result == -1,
#' home:season, away:season, home.adv = ~1,
#' tie.max = ~1, tie.scale = ~1,
#' at.home1 = at.home,
#' at.home2 = !at.home) - 1,
#' eliminate = match, family = poisson, data = football.tri)
#'
#' ### fit shifted & scaled Davidson model
#' shifScalDav <- gnm(count ~
#' GenDavidson(result == 1, result == 0, result == -1,
#' home:season, away:season, home.adv = ~1,
#' tie.max = ~1, tie.scale = ~1, tie.mode = ~1,
#' at.home1 = at.home,
#' at.home2 = !at.home) - 1,
#' eliminate = match, family = poisson, data = football.tri)
#'
#' ### compare models
#' anova(Dav, scalDav, shifScalDav, test = "Chisq")
#'
#' ### diagnostic plots
#' main <- c("Davidson", "Scaled Davidson", "Shifted & Scaled Davidson")
#' mod <- list(Dav, scalDav, shifScalDav)
#' names(mod) <- main
#'
#' ## use football.tri data so that at.home can be found,
#' ## but restrict to actual match results
#' par(mfrow = c(2,2))
#' for (i in 1:3) {
#' coef <- parameters(mod[[i]])
#' plotProportions(result == 1, result == 0, result == -1,
#' home:season, away:season,
#' abilities = coef[alpha],
#' home.adv = coef["home.adv"],
#' tie.max = coef["tie.max"],
#' tie.scale = coef["tie.scale"],
#' tie.mode = coef["tie.mode"],
#' at.home1 = at.home,
#' at.home2 = !at.home,
#' main = main[i],
#' data = football.tri, subset = count == 1)
#' }
#' }
#'
#' @importFrom stats coef plogis runif
#' @export
GenDavidson <- function(win, # TRUE/FALSE
tie, # TRUE/FALSE
loss, # TRUE/FALSE
player1, # player1 in each contest
player2, # ditto player2
home.adv = NULL,
tie.max = ~1,
tie.mode = NULL,
tie.scale = NULL,
at.home1 = NULL,
at.home2 = NULL){
call <- as.expression(sys.call()[c(1,5:6)])
extra <- NULL
if (is.null(tie.max)) stop("a formula must be specified for tie.max")
if (!is.null(home.adv) & is.null(at.home1))
stop("at.home1 and at.home2 must be specified")
has.home.adv <- !is.null(home.adv)
has.tie.mode <- !is.null(tie.mode)
has.tie.scale <- !is.null(tie.scale)
if (has.home.adv) extra <- c(extra, list(home.adv = home.adv))
if (has.tie.mode) extra <- c(extra, list(tie.mode = tie.mode))
if (has.tie.scale) extra <- c(extra, list(tie.scale = tie.scale))
i <- has.home.adv + has.tie.mode + has.tie.scale
a <- match("home.adv", names(extra), 1)
b <- match("tie.mode", names(extra), 1)
c <- match("tie.scale", names(extra), 1)
adv <- has.home.adv | has.tie.mode
list(predictors = {c(extra,
list(tie.max = tie.max,
substitute(player1), # player1 & 2 are homogeneous
substitute(player2)))},
## substitutes "result" for "outcome", but also substitutes all of
## code vector
variables = {c(list(loss = substitute(loss),
tie = substitute(tie),
win = substitute(win)),
list(at.home1 = substitute(at.home1),
at.home2 = substitute(at.home2))[adv])},
common = c(1[has.home.adv], 2[has.tie.mode], 3[has.tie.scale],
4, 5, 5),
term = function(predLabels, varLabels){
if (has.home.adv) {
ability1 <- paste("(", predLabels[a], ") * ", varLabels[4],
" + ", predLabels[i + 2], sep = "")
ability2 <- paste("(", predLabels[a], ") * ", varLabels[5],
" + ", predLabels[i + 3], sep = "")
}
else {
ability1 <- predLabels[i + 2]
ability2 <- predLabels[i + 3]
}
tie.scale <- ifelse(has.tie.scale, predLabels[c], 0)
scale <- paste("exp(", tie.scale, ")", sep = "")
if (has.tie.mode) {
psi1 <- paste("exp((", predLabels[b], ") * ", varLabels[4],
")", sep = "")
psi2 <- paste("exp((", predLabels[b], ") * ", varLabels[5],
")", sep = "")
weight1 <- paste(psi1, "/(", psi1, " + ", psi2, ")", sep = "")
weight2 <- paste(psi2, "/(", psi1, " + ", psi2, ")", sep = "")
}
else {
weight1 <- weight2 <- "0.5"
}
nu <- paste(predLabels[i + 1], " - ", scale, " * (",
weight1, " * log(", weight1, ") + ",
weight2, " * log(", weight2, "))", sep = "")
paste(varLabels[1], " * (", ability2, ") + ",
varLabels[2], " * (", nu, " + ",
scale, " * ", weight1, " * (", ability1, ") + ",
scale, " * ", weight2, " * (", ability2, ") + ",
"(1 - ", scale, ") * ",
"log(exp(", ability1, ") + exp(", ability2, "))) + ",
varLabels[3], " * (", ability1, ")", sep = "")
},
start = function(theta) {
init <- runif(length(theta)) - 0.5
init[c] <- 0.5
}
)
}
class(GenDavidson) <- "nonlin"
|