1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
|
# Copyright (C) 2016- Ioannis Kosmidis
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 or 3 of the License
# (at your option).
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#' Fitting function for [glm()] for reduced-bias estimation and
#' inference
#'
#' [brglmFit()] is a fitting method for [glm()] that fits generalized
#' linear models using implicit and explicit bias reduction methods
#' (Kosmidis, 2014), and other penalized maximum likelihood
#' methods. Currently supported methods include the mean bias-reducing
#' adjusted scores approach in Firth (1993) and Kosmidis & Firth
#' (2009), the median bias-reduction adjusted scores approach in Kenne
#' Pagui et al. (2017), the correction of the asymptotic bias in
#' Cordeiro & McCullagh (1991), the mixed bias-reduction adjusted
#' scores approach in Kosmidis et al (2020), maximum penalized
#' likelihood with powers of the Jeffreys prior as penalty, and
#' maximum likelihood. Estimation is performed using a quasi Fisher
#' scoring iteration (see `vignette("iteration", "brglm2")`, which, in
#' the case of mean-bias reduction, resembles an iterative correction
#' of the asymptotic bias of the Fisher scoring iterates.
#'
#' @inheritParams stats::glm.fit
#' @aliases brglm_fit
#' @param x a design matrix of dimension `n * p`.
#' @param y a vector of observations of length `n`.
#' @param control a list of parameters controlling the fitting
#' process. See [brglmControl()] for details.
#' @param start starting values for the parameters in the linear
#' predictor. If `NULL` (default) then the maximum likelihood
#' estimates are calculated and used as starting values.
#' @param mustart applied only when start is not `NULL`. Starting
#' values for the vector of means to be passed to
#' [glm.fit()] when computing starting values using maximum
#' likelihood.
#' @param etastart applied only when start is not `NULL`. Starting
#' values for the linear predictor to be passed to
#' [glm.fit()] when computing starting values using maximum
#' likelihood.
#' @param fixed_totals effective only when `family` is
#' [poisson()]. Either `NULL` (no effect) or a vector that
#' indicates which counts must be treated as a group. See Details
#' for more information and [brmultinom()].
#' @param singular.ok logical. If `FALSE`, a singular model is an
#' error.
#'
#' @details
#'
#' A detailed description of the supported adjustments and the quasi
#' Fisher scoring iteration is given in the iteration vignette (see,
#' `vignette("iteration", "brglm2")` or Kosmidis et al, 2020). A
#' shorter description of the quasi Fisher scoring iteration is also
#' given in one of the vignettes of the *enrichwith* R package (see,
#' \url{https://cran.r-project.org/package=enrichwith/vignettes/bias.html}).
#' Kosmidis and Firth (2010) describe a parallel quasi Newton-Raphson
#' iteration with the same stationary point.
#'
#' In the special case of generalized linear models for binomial,
#' Poisson and multinomial responses, the adjusted score equation
#' approaches for `type = "AS_mixed"`, `type = "AS_mean"`, and `type =
#' "AS_median"` (see below for what methods each `type` corresponds)
#' return estimates with improved frequentist properties, that are
#' also always finite, even in cases where the maximum likelihood
#' estimates are infinite (e.g. complete and quasi-complete separation
#' in multinomial regression). See, Kosmidis and Firth (2021) for a
#' proof for binomial-response GLMs with Jeffreys-prior penalties to
#' the log-likelihood, which is equivalent to mean bias reduction for
#' logistic regression. See, also,
#' [detectseparation::detect_separation()] and
#' [detectseparation::check_infinite_estimates()] for pre-fit and
#' post-fit methods for the detection of infinite estimates in
#' binomial response generalized linear models.
#'
#' The type of score adjustment to be used is specified through the
#' `type` argument (see [brglmControl()] for details). The available
#' options are
#'
#' * `type = "AS_mixed"`: the mixed bias-reducing score adjustments in
#' Kosmidis et al (2020) that result in mean bias reduction for the
#' regression parameters and median bias reduction for the dispersion
#' parameter, if any; default.
#'
#' * `type = "AS_mean"`: the mean bias-reducing score adjustments in
#' Firth, 1993 and Kosmidis & Firth, 2009. `type = "AS_mixed"` and
#' `type = "AS_mean"` will return the same results when `family` is
#' [binomial()] or [poisson()], i.e. when the dispersion is fixed
#'
#' * `type = "AS_median"`: the median bias-reducing score
#' adjustments in Kenne Pagui et al. (2017)
#'
#' * `type = "MPL_Jeffreys"`: maximum penalized likelihood
#' with powers of the Jeffreys prior as penalty.
#'
#' * `type = "ML"`: maximum likelihood.
#'
#' * `type = "correction"`: asymptotic bias correction, as in
#' Cordeiro & McCullagh (1991).
#'
#' The null deviance is evaluated based on the fitted values using the
#' method specified by the `type` argument (see [brglmControl()]).
#'
#' The `family` argument of the current version of [brglmFit()] can
#' accept any combination of [`"family"`][family] objects and link functions,
#' including families with user-specified link functions, [mis()]
#' links, and [power()] links, but excluding [quasi()],
#' [quasipoisson()] and [quasibinomial()] families.
#'
#' The description of `method` argument and the `Fitting functions`
#' section in [glm()] gives information on supplying fitting
#' methods to [glm()].
#'
#' `fixed_totals` specifies groups of observations for which the sum
#' of the means of a Poisson model will be held fixed to the observed
#' count for each group. This argument is used internally in
#' [brmultinom()] and [bracl()] for baseline-category logit models and
#' adjacent category logit models, respectively.
#'
#' [brglm_fit()] is an alias to [brglmFit()].
#'
#' @author Ioannis Kosmidis `[aut, cre]` \email{ioannis.kosmidis@warwick.ac.uk}, Euloge Clovis Kenne Pagui `[ctb]` \email{kenne@stat.unipd.it}
#'
#' @seealso [brglmControl()], [glm.fit()], [glm()]
#'
#' @references
#'
#' Kosmidis I, Firth D (2021). Jeffreys-prior penalty, finiteness
#' and shrinkage in binomial-response generalized linear
#' models. *Biometrika*, **108**, 71-82. \doi{10.1093/biomet/asaa052}.
#'
#' Kosmidis I, Kenne Pagui E C, Sartori N (2020). Mean and median bias
#' reduction in generalized linear models. *Statistics and Computing*,
#' **30**, 43-59. \doi{10.1007/s11222-019-09860-6}.
#'
#' Cordeiro G M, McCullagh P (1991). Bias correction in generalized
#' linear models. *Journal of the Royal Statistical Society. Series B
#' (Methodological)*, **53**, 629-643. \doi{10.1111/j.2517-6161.1991.tb01852.x}.
#'
#' Firth D (1993). Bias reduction of maximum likelihood estimates.
#' *Biometrika*. **80**, 27-38. \doi{10.2307/2336755}.
#'
#' Kenne Pagui E C, Salvan A, Sartori N (2017). Median bias
#' reduction of maximum likelihood estimates. *Biometrika*, **104**,
#' 923–938. \doi{10.1093/biomet/asx046}.
#'
#' Kosmidis I, Firth D (2009). Bias reduction in exponential family
#' nonlinear models. *Biometrika*, **96**, 793-804. \doi{10.1093/biomet/asp055}.
#'
#' Kosmidis I, Firth D (2010). A generic algorithm for reducing
#' bias in parametric estimation. *Electronic Journal of Statistics*,
#' **4**, 1097-1112. \doi{10.1214/10-EJS579}.
#'
#' Kosmidis I (2014). Bias in parametric estimation: reduction and
#' useful side-effects. *WIRE Computational Statistics*, **6**,
#' 185-196. \doi{10.1002/wics.1296}.
#'
#' @examples
#' ## The lizards example from ?brglm::brglm
#' data("lizards")
#' # Fit the model using maximum likelihood
#' lizardsML <- glm(cbind(grahami, opalinus) ~ height + diameter +
#' light + time, family = binomial(logit), data = lizards,
#' method = "glm.fit")
#' # Mean bias-reduced fit:
#' lizardsBR_mean <- glm(cbind(grahami, opalinus) ~ height + diameter +
#' light + time, family = binomial(logit), data = lizards,
#' method = "brglmFit")
#' # Median bias-reduced fit:
#' lizardsBR_median <- glm(cbind(grahami, opalinus) ~ height + diameter +
#' light + time, family = binomial(logit), data = lizards,
#' method = "brglmFit", type = "AS_median")
#' summary(lizardsML)
#' summary(lizardsBR_median)
#' summary(lizardsBR_mean)
#'
#' # Maximum penalized likelihood with Jeffreys prior penatly
#' lizards_Jeffreys <- glm(cbind(grahami, opalinus) ~ height + diameter +
#' light + time, family = binomial(logit), data = lizards,
#' method = "brglmFit", type = "MPL_Jeffreys")
#' # lizards_Jeffreys is the same fit as lizardsBR_mean (see Firth, 1993)
#' all.equal(coef(lizardsBR_mean), coef(lizards_Jeffreys))
#'
#' # Maximum penalized likelihood with powers of the Jeffreys prior as
#' # penalty. See Kosmidis & Firth (2021) for the finiteness and
#' # shrinkage properties of the maximum penalized likelihood
#' # estimators in binomial response models
#' \donttest{
#' a <- seq(0, 20, 0.5)
#' coefs <- sapply(a, function(a) {
#' out <- glm(cbind(grahami, opalinus) ~ height + diameter +
#' light + time, family = binomial(logit), data = lizards,
#' method = "brglmFit", type = "MPL_Jeffreys", a = a)
#' coef(out)
#' })
#' # Illustration of shrinkage as a grows
#' matplot(a, t(coefs), type = "l", col = 1, lty = 1)
#' abline(0, 0, col = "grey")
#'}
#'
#' \donttest{
#' ## Another example from
#' ## King, Gary, James E. Alt, Nancy Elizabeth Burns and Michael Laver
#' ## (1990). "A Unified Model of Cabinet Dissolution in Parliamentary
#' ## Democracies", _American Journal of Political Science_, **34**, 846-870
#'
#' data("coalition", package = "brglm2")
#' # The maximum likelihood fit with log link
#' coalitionML <- glm(duration ~ fract + numst2, family = Gamma, data = coalition)
#' # The mean bias-reduced fit
#' coalitionBR_mean <- update(coalitionML, method = "brglmFit")
#' # The bias-corrected fit
#' coalitionBC <- update(coalitionML, method = "brglmFit", type = "correction")
#' # The median bias-corrected fit
#' coalitionBR_median <- update(coalitionML, method = "brglmFit", type = "AS_median")
#' }
#'
#' \donttest{
#' ## An example with offsets from Venables & Ripley (2002, p.189)
#' data("anorexia", package = "MASS")
#'
#' anorexML <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
#' family = gaussian, data = anorexia)
#' anorexBC <- update(anorexML, method = "brglmFit", type = "correction")
#' anorexBR_mean <- update(anorexML, method = "brglmFit")
#' anorexBR_median <- update(anorexML, method = "brglmFit", type = "AS_median")
#'
#' # All methods return the same estimates for the regression
#' # parameters because the maximum likelihood estimator is normally
#' # distributed around the `true` value under the model (hence, both
#' # mean and component-wise median unbiased). The Wald tests for
#' # anorexBC and anorexBR_mean differ from anorexML because the
#' # bias-reduced estimator of the dispersion is the unbiased, by
#' # degree of freedom adjustment (divide by n - p), estimator of the
#' # residual variance. The Wald tests from anorexBR_median are based
#' # on the median bias-reduced estimator of the dispersion that
#' # results from a different adjustment of the degrees of freedom
#' # (divide by n - p - 2/3)
#' summary(anorexML)
#' summary(anorexBC)
#' summary(anorexBR_mean)
#' summary(anorexBR_median)
#' }
#'
#' ## endometrial data from Heinze & Schemper (2002) (see ?endometrial)
#' data("endometrial", package = "brglm2")
#' endometrialML <- glm(HG ~ NV + PI + EH, data = endometrial,
#' family = binomial("probit"))
#' endometrialBR_mean <- update(endometrialML, method = "brglmFit",
#' type = "AS_mean")
#' endometrialBC <- update(endometrialML, method = "brglmFit",
#' type = "correction")
#' endometrialBR_median <- update(endometrialML, method = "brglmFit",
#' type = "AS_median")
#' summary(endometrialML)
#' summary(endometrialBC)
#' summary(endometrialBR_mean)
#' summary(endometrialBR_median)
#'
#' @export
brglmFit <- function(x, y, weights = rep(1, nobs), start = NULL, etastart = NULL,
mustart = NULL, offset = rep(0, nobs), family = gaussian(),
control = list(), intercept = TRUE,
## Arguments that glm will not use in its call to brglmFit (be wise with defaults!)
fixed_totals = NULL, singular.ok = TRUE) {
trace_iteration <- function() {
if (iter %% control$trace == 0) {
st <- max(abs(step_beta), na.rm = TRUE)
gr <- max(abs(adjusted_grad_beta), na.rm = TRUE)
cat("Coefficients update:\t")
cat("Outer/Inner iteration:\t", sprintf("%03d", iter), "/", sprintf("%03d", step_factor), "\n", sep = "")
if (!no_dispersion) {
st <- abs(step_zeta)
gr <- abs(adjusted_grad_zeta)
cat("Dispersion update:\t")
cat("Outer iteration:\t", sprintf("%03d", iter), "\n")
}
cat("max |step|:", format(round(st, 6), nsmall = 6, scientific = FALSE), "\t",
"max |gradient|:", format(round(gr, 6), nsmall = 6, scientific = FALSE), "\n")
}
}
## key_quantities, grad, info and bias are ALWAYS in beta, dispersion parameterization
key_quantities <- function(pars, y, level = 0, scale_totals = FALSE, qr = TRUE) {
betas <- pars[seq.int(nvars)]
dispersion <- pars[nvars + 1]
prec <- 1/dispersion
etas <- drop(x %*% betas + offset)
mus <- linkinv(etas)
if (scale_totals) {
## Rescale mus
mus_totals <- as.vector(tapply(mus, fixed_totals, sum))[fixed_totals]
mus <- mus * row_totals / mus_totals
etas <- linkfun(mus)
}
out <- list(precision = prec,
betas = betas,
dispersion = dispersion,
etas = etas,
mus = mus,
scale_totals = scale_totals)
mean_quantities <- function(out) {
d1mus <- mu.eta(etas)
d2mus <- d2mu.deta(etas)
varmus <- variance(mus)
working_weights <- weights * d1mus^2 / varmus
wx <- sqrt(working_weights) * x
out$d1mus <- d1mus
out$d2mus <- d2mus
out$varmus <- varmus
out$d1varmus <- d1variance(mus)
out$working_weights <- working_weights
if (qr) out$qr_decomposition <- qr(wx)
out
}
dispersion_quantities <- function(out) {
zetas <- -weights * prec
out$zetas <- zetas
## Evaluate the derivatives of the a function only for
## objervations with non-zero weight
d1afuns <- d2afuns <- d3afuns <- rep(NA_real_, nobs)
d1afuns[keep] <- d1afun(zetas[keep])
## because of the way dev.resids is implemented, this is
## d1afun is the expectation of dev.resids + 2 for gamma
## families, so subtract 2
if (family$family == "Gamma") d1afuns <- d1afuns - 2
d2afuns[keep] <- d2afun(zetas[keep])
d3afuns[keep] <- d3afun(zetas[keep])
out$d2afuns <- d2afuns
out$d3afuns <- d3afuns
out$deviance_residuals <- dev.resids(y, mus, weights)
out$Edeviance_residuals <- weights * d1afuns
out
}
if (level == 0) {
out <- mean_quantities(out)
}
if (level == 1) {
out <- dispersion_quantities(out)
}
if (level > 1) {
out <- mean_quantities(out)
out <- dispersion_quantities(out)
}
out
}
gradient <- function(pars, level = 0, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = FALSE)
}
with(fit, {
if (level == 0) {
score_components <- weights * d1mus * (y - mus) / varmus * x
return(precision * .colSums(score_components, nobs, nvars, TRUE))
}
if (level == 1) {
return(1/2 * precision^2 * sum(deviance_residuals - Edeviance_residuals, na.rm = TRUE))
}
})
}
information <- function(pars, level = 0, fit = NULL, inverse = FALSE) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = TRUE)
}
with(fit, {
if (level == 0) {
R_matrix <- qr.R(qr_decomposition)
if (inverse) {
## return(dispersion * tcrossprod(solve(R_matrix)))
return(dispersion * chol2inv(R_matrix))
} else {
return(precision * crossprod(R_matrix))
}
}
if (level == 1) {
info <- 0.5 * sum(weights^2 * d2afuns, na.rm = TRUE)/dispersion^4
if (inverse) {
return(1/info)
} else {
return(info)
}
}
})
}
hat_values <- function(pars, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = 0, qr = TRUE)
}
with(fit, {
Qmat <- qr.Q(qr_decomposition)
.rowSums(Qmat * Qmat, nobs, nvars, TRUE)
})
}
## FIXME: Redundant function for now
refit <- function(y, betas_start = NULL) {
## Estimate Beta
betas <- coef(glm.fit(x = x, y = y, weights = weights,
start = betas_start,
offset = offset,
family = family,
control = list(epsilon = control$epsilon,
maxit = 2, trace = FALSE),
intercept = intercept))
betas
}
## Estimate the ML of the dispersion parameter for gaussian, gamma and inverse Gaussian
## Set the dispersion to 1 if Poisson or binomial
## betas is only the regression parameters
estimate_dispersion <- function(betas, y) {
if (no_dispersion) {
disp <- 1
dispML <- 1
} else {
if (df_residual > 0) {
dispFit <- try(uniroot(f = function(phi) {
theta <- c(betas, phi)
cfit <- key_quantities(theta, y = y, level = 1, qr = FALSE)
gradient(theta, level = 1, fit = cfit)
}, lower = .Machine$double.eps, upper = 10000, tol = control$epsilon), silent = FALSE)
if (inherits(dispFit, "try-error")) {
warning("the ML estimate of the dispersion could not be calculated. An alternative estimate had been used as starting value.")
dispML <- NA_real_
disp <- NA_real_
} else {
disp <- dispML <- dispFit$root
}
} else { ## if the model is saturated dispML is NA_real_
disp <- 1 ## A convenient value
dispML <- NA_real_
}
}
list(dispersion = disp, dispersion_ML = dispML)
}
AS_mean_adjustment <- function(pars, level = 0, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = TRUE)
}
with(fit, {
if (level == 0) {
hatvalues <- hat_values(pars, fit = fit)
## Use only observations with keep = TRUE to ensure that no division with zero takes place
return(.colSums(0.5 * hatvalues * d2mus/d1mus * x, nobs, nvars, TRUE))
}
if (level == 1) {
s1 <- sum(weights^3 * d3afuns, na.rm = TRUE)
s2 <- sum(weights^2 * d2afuns, na.rm = TRUE)
return((nvars - 2)/(2 * dispersion) + s1/(2 * dispersion^2 * s2))
}
})
}
AS_Jeffreys_adjustment <- function(pars, level = 0, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = TRUE)
}
with(fit, {
if (level == 0) {
hatvalues <- hat_values(pars, fit = fit)
## Use only observations with keep = TRUE to ensure that no division with zero takes place
return(2 * control$a * .colSums(0.5 * hatvalues * (2 * d2mus/d1mus - d1varmus * d1mus / varmus) * x, nobs, nvars, TRUE))
}
if (level == 1) {
s1 <- sum(weights^3 * d3afuns, na.rm = TRUE)
s2 <- sum(weights^2 * d2afuns, na.rm = TRUE)
return(2 * control$a * (-(nvars + 4)/(2 * dispersion) + s1/(2 * dispersion^2 * s2)))
}
})
}
AS_median_adjustment <- function(pars, level = 0, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = TRUE)
}
with(fit, {
if (level == 0) {
hatvalues <- hat_values(pars, fit = fit)
R_matrix <- qr.R(qr_decomposition)
info_unscaled <- crossprod(R_matrix)
inverse_info_unscaled <- chol2inv(R_matrix)
## FIXME: There is 1) definitely a better way to do this, 2) no time...
b_vector <- numeric(nvars)
for (j in seq.int(nvars)) {
inverse_info_unscaled_j <- inverse_info_unscaled[j, ]
vcov_j <- tcrossprod(inverse_info_unscaled_j) / inverse_info_unscaled_j[j]
hats_j <- .rowSums((x %*% vcov_j) * x, nobs, nvars, TRUE) * working_weights
b_vector[j] <- inverse_info_unscaled_j %*% .colSums(x * (hats_j * (d1mus * d1varmus / (6 * varmus) - 0.5 * d2mus/d1mus)), nobs, nvars, TRUE)
}
return(.colSums(0.5 * hatvalues * d2mus / d1mus * x, nobs, nvars, TRUE) +
info_unscaled %*% b_vector)
}
if (level == 1) {
s1 <- sum(weights^3 * d3afuns, na.rm = TRUE)
s2 <- sum(weights^2 * d2afuns, na.rm = TRUE)
return(nvars/(2 * dispersion) + s1/(6 * dispersion^2 * s2))
}
})
}
AS_mixed_adjustment <- function(pars, level = 0, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = TRUE)
}
with(fit, {
if (level == 0) {
hatvalues <- hat_values(pars, fit = fit)
## Use only observations with keep = TRUE to ensure that no division with zero takes place
return(.colSums(0.5 * hatvalues * d2mus/d1mus * x, nobs, nvars, TRUE))
}
if (level == 1) {
s1 <- sum(weights^3 * d3afuns, na.rm = TRUE)
s2 <- sum(weights^2 * d2afuns, na.rm = TRUE)
return(nvars/(2 * dispersion) + s1/(6 * dispersion^2 * s2))
}
})
}
## compute_step_components does everything on the scale of the /transformed/ dispersion
compute_step_components <- function(pars, level = 0, fit = NULL) {
if (is.null(fit)) {
fit <- key_quantities(pars, y = y, level = level, qr = TRUE)
}
if (level == 0) {
grad <- gradient(pars, fit = if (has_fixed_totals) NULL else fit, level = 0)
inverse_info <- try(information(pars, inverse = TRUE, fit = fit, level = 0))
failed_inversion <- inherits(inverse_info, "try-error")
adjustment <- adjustment_function(pars, fit = fit, level = 0)
failed_adjustment <- any(is.na(adjustment))
}
if (level == 1) {
if (no_dispersion | df_residual < 1) {
grad <- adjustment <- inverse_info <- NA_real_
failed_adjustment <- failed_inversion <- FALSE
} else {
d1zeta <- eval(d1_transformed_dispersion)
d2zeta <- eval(d2_transformed_dispersion)
grad <- gradient(theta, fit = fit, level = 1)/d1zeta
inverse_info <- 1/information(theta, inverse = FALSE, fit = fit, level = 1) * d1zeta^2
failed_inversion <- !is.finite(inverse_info)
## adjustment <- adjustment_function(theta, fit = fit, level = 1)/d1zeta - if (is_ML | is_AS_median) 0 else 0.5 * d2zeta / d1zeta^2
adjustment <- adjustment_function(theta, fit = fit, level = 1)/d1zeta - 0.5 * d2zeta / d1zeta^2
failed_adjustment <- is.na(adjustment)
}
}
out <- list(grad = grad,
inverse_info = inverse_info,
adjustment = adjustment,
failed_adjustment = failed_adjustment,
failed_inversion = failed_inversion)
out
}
customTransformation <- is.list(control$transformation) & length(control$transformation) == 2
if (customTransformation) {
transformation0 <- control$transformation
}
control <- do.call("brglmControl", control)
adjustment_function <- switch(control$type,
"correction" = AS_mean_adjustment,
"AS_mean" = AS_mean_adjustment,
"AS_median" = AS_median_adjustment,
"AS_mixed" = AS_mixed_adjustment,
"MPL_Jeffreys" = AS_Jeffreys_adjustment,
"ML" = function(pars, ...) 0)
## Some useful quantities
is_ML <- control$type == "ML"
is_AS_median <- control$type == "AS_median"
is_AS_mixed <- control$type == "AS_mixed"
is_correction <- control$type == "correction"
no_dispersion <- family$family %in% c("poisson", "binomial")
if (is_ML | is_AS_median | is_AS_mixed) {
transformation1 <- control$transformation
Trans1 <- control$Trans
inverseTrans1 <- control$inverseTrans
## Set the transformation to identity
control$transformation <- "identity"
control$Trans <- expression(dispersion)
control$inverseTrans <- expression(transformed_dispersion)
}
## If fixed_totals is specified the compute row_totals
if (is.null(fixed_totals)) {
has_fixed_totals <- FALSE
} else {
if (family$family == "poisson") {
row_totals <- as.vector(tapply(y, fixed_totals, sum))[fixed_totals]
has_fixed_totals <- TRUE
} else {
has_fixed_totals <- FALSE
}
}
## Ensure x is a matrix, extract variable names, observation
## names, nobs, nvars, and initialize weights and offsets if
## needed
x <- as.matrix(x)
betas_names <- dimnames(x)[[2L]]
nvars <- ncol(x)
EMPTY <- nvars == 0
if (is.null(betas_names) & !EMPTY) {
betas_names <- colnames(x) <- paste0("x", seq.int(nvars))
}
ynames <- if (is.matrix(y)) rownames(y) else names(y)
converged <- FALSE
nobs <- NROW(y)
if (is.null(weights)) {
weights <- rep.int(1, nobs)
}
if (missing_offset <- is.null(offset)) {
offset <- rep.int(0, nobs)
}
ok_links <- c("logit", "probit", "cauchit",
"cloglog", "identity", "log",
"sqrt", "inverse")
if (isTRUE(family$family %in% c("quasi", "quasibinomial", "quasipoisson"))) {
stop("`brglmFit` does not currently support the `quasi`, `quasipoisson` and `quasibinomial` families.")
}
## Enrich family
family <- enrichwith::enrich(family, with = c("d1afun", "d2afun", "d3afun", "d1variance"))
if ((family$link %in% ok_links) | (grepl("mu\\^", family$link))) {
## Enrich the link object with d2mu.deta and update family object
linkglm <- make.link(family$link)
linkglm <- enrichwith::enrich(linkglm, with = "d2mu.deta")
## Put everything into the family object
family[names(linkglm)] <- linkglm
}
## Annoying thing is that link-glm components other than the
## standard ones disappear when extra arguments are passed to a
## family functions... Anyway, we only require d2mu.deta here.
## Extract functions from the enriched family object
variance <- family$variance
d1variance <- family$d1variance
linkinv <- family$linkinv
linkfun <- family$linkfun
if (!is.function(variance) || !is.function(linkinv))
stop("'family' argument seems not to be a valid family object",
call. = FALSE)
dev.resids <- family$dev.resids
aic <- family$aic
mu.eta <- family$mu.eta
## If the family is custom then d2mu.deta cannot survive when
## passing throguh current family functions. But mu.eta does; so
## we compute d2mu.deta numerically; this allows also generality,
## as the users can then keep their custom link implementations
## unaltered. Issue is scalability, due to the need of evaluating
## n numerical derivatives
if (is.null(family$d2mu.deta)) {
d2mu.deta <- function(eta) {
numDeriv::grad(mu.eta, eta)
}
} else {
d2mu.deta <- family$d2mu.deta
}
d1afun <- family$d1afun
d2afun <- family$d2afun
d3afun <- family$d3afun
simulate <- family$simulate
d1_transformed_dispersion <- DD(control$Trans, "dispersion", order = 1)
d2_transformed_dispersion <- DD(control$Trans, "dispersion", order = 2)
## Check for invalid etas and mus
valid_eta <- unless_null(family$valideta, function(eta) TRUE)
valid_mu <- unless_null(family$validmu, function(mu) TRUE)
## FIXME: mustart and etastart set to NULL by default
mustart <- NULL
etastart <- NULL
## Initialize as prescribed in family
eval(family$initialize)
## If there are no covariates in the model then evaluate only the offset
if (EMPTY) {
etas <- rep.int(0, nobs) + offset
if (!valid_eta(etas))
stop("invalid linear predictor values in empty model", call. = FALSE)
mus <- linkinv(etas)
if (!valid_mu(mus))
stop("invalid fitted means in empty model", call. = FALSE)
## deviance <- sum(dev.resids(y, mus, weights))
working_weights <- ((weights * mu.eta(etas)^2)/variance(mus))^0.5
residuals <- (y - mus)/mu.eta(etas)
keep <- rep(TRUE, length(residuals))
boundary <- converged <- TRUE
betas_all <- numeric()
rank <- 0
iter <- 0L
keep <- weights > 0
nkeep <- sum(keep)
df_residual <- nkeep
} else {
boundary <- converged <- FALSE
## Detect aliasing
if (!isTRUE(control$check_aliasing)) {
is_full_rank <- TRUE ## Assumption
rank <- nvars_all <- nvars
betas_names_all <- betas_names
} else {
qrx <- qr(x)
rank <- qrx$rank
is_full_rank <- rank == nvars
if (!isTRUE(singular.ok) && !isTRUE(is_full_rank)) {
stop("singular fit encountered")
}
if (!isTRUE(is_full_rank)) {
aliased <- qrx$pivot[seq.int(qrx$rank + 1, nvars)]
X_all <- x
x <- x[, -aliased]
nvars_all <- nvars
nvars <- ncol(x)
betas_names_all <- betas_names
betas_names <- betas_names[-aliased]
} else {
nvars_all <- nvars
betas_names_all <- betas_names
}
}
betas_all <- structure(rep(NA_real_, nvars_all), .Names = betas_names_all)
keep <- weights > 0
## Check for zero weights
## if (any(!keep)) {
## warning("Observations with non-positive weights have been omited from the computations")
## }
nkeep <- sum(keep)
df_residual <- nkeep - rank
## Handle starting values
## If start is NULL then start at the ML estimator else use start
if (is.null(start)) {
## Adjust counts if binomial or Poisson in order to avoid infinite estimates
adj <- control$response_adjustment
if (is.null(adj)) {
adj <- nvars/nobs
}
if (family$family == "binomial") {
weights.adj <- weights + (!(is_correction)) * adj
y.adj <- (weights * y + (!(is_correction)) * 0.5 * adj)/weights.adj
} else {
weights.adj <- weights
y.adj <- y + if (family$family == "poisson") (!(is_correction)) * 0.5 * adj else 0
}
## ML fit to get starting values
warn <- getOption("warn")
## Get startng values and kill warnings whilst doing that
options(warn = -1)
tempFit <- glm.fit(x = x, y = y.adj, weights = weights.adj,
etastart = etastart, mustart = mustart,
offset = offset, family = family,
control = list(epsilon = control$epsilon,
maxit = 10000, trace = FALSE),
intercept = intercept)
## Set warn to its original value
options(warn = warn)
betas <- coef(tempFit)
names(betas) <- betas_names
dispList <- estimate_dispersion(betas, y = y)
dispersion <- dispList$dispersion
if (is.na(dispersion)) dispersion <- var(y)/variance(sum(weights * y)/sum(weights))
dispersion_ML <- dispList$dispersion_ML
transformed_dispersion <- eval(control$Trans)
} else {
if ((length(start) == nvars_all) & is.numeric(start)) {
betas_all <- start
names(betas_all) <- betas_names_all
if (!isTRUE(is_full_rank)) {
betas_all[aliased] <- NA_real_
betas <- betas_all[-aliased]
} else {
betas <- betas_all
}
## Estimate dispersion based on current value for betas
dispList <- estimate_dispersion(betas, y = y)
dispersion <- dispList$dispersion
if (is.na(dispersion)) dispersion <- var(y)/variance(sum(weights * y)/sum(weights))
dispersion_ML <- dispList$dispersion_ML
transformed_dispersion <- eval(control$Trans)
}
if ((length(start) == nvars_all + 1) & is.numeric(start)) {
betas_all <- start[seq.int(nvars_all)]
names(betas_all) <- betas_names_all
if (!isTRUE(is_full_rank)) {
betas_all[aliased] <- NA_real_
betas <- betas_all[-aliased]
} else {
betas <- betas_all
}
transformed_dispersion <- start[nvars_all + 1]
dispersion_ML <- NA_real_
dispersion <- eval(control$inverseTrans)
}
if (length(start) > nvars_all + 1 | length(start) < nvars_all) {
stop(paste(paste(gettextf("length of 'start' should be equal to %d and correspond to initial betas for %s", nvars_all, paste(deparse(betas_names_all), collapse = ", "), "or", gettextf("to %d and also include a starting value for the transformed dispersion", nvars_all + 1)))), domain = NA_real_)
}
}
adjusted_grad_all <- rep(NA_real_, nvars_all + 1)
names(adjusted_grad_all) <- c(betas_names_all, "Transformed dispersion")
if (is_correction) {
if (control$maxit > 0) control$maxit <- 1
control$slowit <- 1
control$max_step_factor <- 1
}
## Evaluate at the starting values
theta <- c(betas, dispersion)
transformed_dispersion <- eval(control$Trans)
## Mean quantities
## If fixed_totals is provided (i.e. multinomial regression
## via the Poisson trick) then evaluate everything expect
## the score function at the scaled fitted means
quantities <- key_quantities(theta, y = y, level = 2 * !no_dispersion, scale_totals = has_fixed_totals, qr = TRUE)
step_components_beta <- compute_step_components(theta, level = 0, fit = quantities)
step_components_zeta <- compute_step_components(theta, level = 1, fit = quantities)
if (step_components_beta$failed_inversion) {
warning("failed to invert the information matrix")
}
if (step_components_beta$failed_adjustment) {
warning("failed to calculate score adjustment")
}
adjusted_grad_beta <- with(step_components_beta, {
grad + adjustment
})
step_beta <- drop(step_components_beta$inverse_info %*% adjusted_grad_beta)
## Dispersion quantities
if (no_dispersion) {
adjusted_grad_zeta <- step_zeta <- NA_real_
} else {
if (step_components_zeta$failed_inversion) {
warning("failed to invert the information matrix")
}
if (step_components_zeta$failed_adjustment) {
warning("failed to calculate score adjustment")
}
adjusted_grad_zeta <- with(step_components_zeta, {
grad + adjustment
})
step_zeta <- as.vector(adjusted_grad_zeta * step_components_zeta$inverse_info)
}
## Main iterations
slowit <- control$slowit
if (control$maxit == 0) {
iter <- 0
failed <- FALSE
} else {
## Outer iteration
for (iter in seq.int(control$maxit)) {
step_factor <- 0
testhalf <- TRUE
## Inner iteration
while (testhalf & step_factor < control$max_step_factor) {
## store previous values
## betas0 <- betas
## dispersion0 <- dispersion
step_beta_previous <- step_beta
step_zeta_previous <- step_zeta
## Update betas
betas <- betas + slowit * 2^(-step_factor) * step_beta
## Update zetas
if (!no_dispersion & df_residual > 0) {
transformed_dispersion <- eval(control$Trans)
transformed_dispersion <- transformed_dispersion + 2^(-step_factor) * step_zeta
dispersion <- eval(control$inverseTrans)
}
## Compute key quantities
theta <- c(betas, dispersion)
transformed_dispersion <- eval(control$Trans)
## Mean quantities
quantities <- try(key_quantities(theta, y = y, level = 2 * !no_dispersion, scale_totals = has_fixed_totals, qr = TRUE), silent = TRUE)
## This is to capture qr failing and revering to previous estimates
if (failed_adjustment_beta <- inherits(quantities, "try-error")) {
## betas <- betas0
## dispersion <- dispersion0
warning("failed to calculate score adjustment")
break
}
step_components_beta <- compute_step_components(theta, level = 0, fit = quantities)
step_components_zeta <- compute_step_components(theta, level = 1, fit = quantities)
if (failed_inversion_beta <- step_components_beta$failed_inversion) {
warning("failed to invert the information matrix")
break
}
if (failed_adjustment_beta <- step_components_beta$failed_adjustment) {
warning("failed to calculate score adjustment")
break
}
adjusted_grad_beta <- with(step_components_beta, grad + adjustment)
step_beta <- drop(step_components_beta$inverse_info %*% adjusted_grad_beta)
## Dispersion quantities
if (no_dispersion) {
adjusted_grad_zeta <- step_zeta <- NA_real_
failed_inversion_zeta <- failed_adjustment_zeta <- FALSE
} else {
if (failed_inversion_zeta <- step_components_zeta$failed_inversion) {
warning("failed to invert the information matrix")
break
}
if (failed_adjustment_zeta <- step_components_zeta$failed_adjustment) {
warning("failed to calculate score adjustment")
break
}
adjusted_grad_zeta <- with(step_components_zeta, grad + adjustment)
step_zeta <- as.vector(adjusted_grad_zeta * step_components_zeta$inverse_info)
}
## Convergence criteria
linf_current <- max(abs(c(step_beta, step_zeta)), na.rm = TRUE)
linf_previous <- max(abs(c(step_beta_previous, step_zeta_previous)), na.rm = TRUE)
testhalf <- linf_current > linf_previous
## Continue inner loop
## if (step_factor == 0 & iter == 1) {
## testhalf <- TRUE
## }
step_factor <- step_factor + 1
## Trace here
if (control$trace) {
trace_iteration()
}
}
failed <- failed_adjustment_beta | failed_inversion_beta | failed_adjustment_zeta | failed_inversion_zeta
if (failed | linf_current < control$epsilon) {
break
}
}
}
adjusted_grad_all[betas_names] <- adjusted_grad_beta
adjusted_grad_all["Transformed dispersion"] <- adjusted_grad_zeta
betas_all[betas_names] <- betas
## Convergence analysis
if ((failed | iter >= control$maxit) & !(is_correction)) {
warning("brglmFit: algorithm did not converge. Try changing the optimization algorithm defaults, e.g. the defaults for one or more of `maxit`, `epsilon`, `slowit`, and `response_adjustment`; see `?brglm_control` for default values and available options", call. = FALSE)
converged <- FALSE
} else {
converged <- TRUE
}
if (boundary) {
warning("brglmFit: algorithm stopped at boundary value", call. = FALSE)
}
## QR decomposition and fitted values are at the final value
## for the coefficients
## QR decomposition for cov.unscaled
if (!isTRUE(is_full_rank)) {
x <- X_all
betas <- betas_all
betas[is.na(betas)] <- 0
nvars <- nvars_all
}
## If has_fixed_totals = TRUE, then scale fitted values before
## calculating QR decompositions, fitted values, etas,
## residuals and working_weights
quantities <- key_quantities(c(betas, dispersion), y = y, level = 2 * !no_dispersion, scale_totals = has_fixed_totals, qr = TRUE)
qr.Wx <- quantities$qr_decomposition
mus <- quantities$mus
etas <- quantities$etas
## Residuals
residuals <- with(quantities, (y - mus)/d1mus)
working_weights <- quantities$working_weights
## info_transformed_dispersion will be NA if is_ML | is_AS_median | is_AS_mixed
info_transformed_dispersion <- 1/step_components_zeta$inverse_info
if (is_ML | is_AS_median | is_AS_mixed) {
transformed_dispersion <- eval(Trans1)
d1zeta <- eval(DD(Trans1, "dispersion", order = 1))
adjusted_grad_all["Transformed dispersion"] <- adjusted_grad_all["Transformed dispersion"] / d1zeta
info_transformed_dispersion <- info_transformed_dispersion / d1zeta^2
control$transformation <- transformation1
control$trans <- Trans1
control$inverseTrans <- inverseTrans1
}
eps <- 10 * .Machine$double.eps
if (family$family == "binomial") {
if (any(mus > 1 - eps) || any(mus < eps)) {
warning("brglmFit: fitted probabilities numerically 0 or 1 occurred", call. = FALSE)
boundary <- TRUE
}
}
if (family$family == "poisson") {
if (any(mus < eps)) {
warning("brglmFit: fitted rates numerically 0 occurred", call. = FALSE)
boundary <- TRUE
}
}
if (df_residual == 0 & !no_dispersion) {
dispersion <- NA_real_
}
## ## Estimate of first-order bias from the last iteration (so
## ## not at the final value for the coefficients)
## if (is_ML) {
## ## For now... To be set to calculate biases at a later version
## bias_betas <- bias_zeta <- NULL
## }
## else {
## bias_betas <- with(step_components_beta, -drop(inverse_info %*% adjustment))
## bias_zeta <- with(step_components_zeta, -drop(inverse_info %*% adjustment))
## bias_betas_all <- betas_all
## bias_betas_all[betas_names] <- bias_betas
## ## If correction has been requested then add estimated biases an attribute to the coefficients
## if (is_correction) {
## attr(betas_all, "biases") <- bias_betas_all
## attr(transformed_dispersion, "biases") <- bias_zeta
## }
## }
}
## Working weights
wt <- rep.int(0, nobs)
wt[keep] <- working_weights[keep]
names(wt) <- names(residuals) <- names(mus) <- names(etas) <- names(weights) <- names(y) <- ynames
## For the null deviance:
##
## If there is an intercept but not an offset then the ML fitted
## value is the weighted average and is calculated easily below if
## ML is used
##
control0 <- control
control0$maxit <- 1000
if (customTransformation) {
control0$transformation <- transformation0
}
if (intercept & missing_offset) {
nullFit <- brglmFit(x = x[, "(Intercept)", drop = FALSE], y = y, weights = weights,
offset = rep(0, nobs), family = family, intercept = TRUE,
control = control0[c("epsilon", "maxit", "type", "transformation", "slowit")],
start = if (no_dispersion) linkfun(mean(y)) else c(linkfun(mean(y)), 1))
## FIX: Starting values above are hard-coded. Change in future versions
nullmus <- nullFit$fitted
}
## If there is an offset but not an intercept then the fitted
## value is the inverse link evaluated at the offset
##
## If there is neither an offset nor an intercept then the fitted
## values is the inverse link at zero (and hence covered by
## linkinv(offset) because offset is zero
if (!intercept) {
nullmus <- linkinv(offset)
}
## If there is an intercept and an offset then, for calculating
## the null deviance glm will make a call to the fitter to fit the
## glm with intercept and the offset
if (intercept & !missing_offset) {
nullmus <- mus
## doen't really matter what nullmus is set to. glm will make
## a new call to brglmFit and use the deviance from that call
## as null
}
nulldev <- sum(dev.resids(y, nullmus, weights))
nulldf <- nkeep - as.integer(intercept)
deviance <- sum(dev.resids(y, mus, weights))
aic.model <- aic(y, n, mus, weights, deviance) + 2 * rank
list(coefficients = betas_all,
residuals = residuals,
fitted.values = mus,
## TODO: see effects?
## effects = if (!EMPTY) effects,
R = if (!EMPTY) qr.R(qr.Wx),
rank = rank,
qr = if (!EMPTY) structure(qr.Wx[c("qr", "rank", "qraux", "pivot", "tol")], class = "qr"),
family = family,
linear.predictors = etas,
deviance = deviance,
aic = aic.model,
null.deviance = nulldev,
iter = iter,
weights = wt,
prior.weights = weights,
df.residual = df_residual,
df.null = nulldf,
y = y,
converged = converged,
boundary = boundary,
dispersion = dispersion,
dispersion_ML = dispersion_ML,
transformed_dispersion = transformed_dispersion,
info_transformed_dispersion = if (no_dispersion) NA_real_ else info_transformed_dispersion,
grad = adjusted_grad_all,
transformation = control$transformation,
## cov.unscaled = tcrossprod(R_matrix),
type = control$type,
class = "brglmFit")
}
#' Extract model coefficients from [`"brglmFit"`][brglmFit] objects
#'
#' @inheritParams stats::coef
#' @param model one of `"mean"` (default), `"dispersion"`, `"full",
#' to return the estimates of the parameters in the linear
#' prediction only, the estimate of the dispersion parameter only,
#' or both, respectively.
#'
#' @details
#'
#' See [coef()] for more details.
#'
#' @seealso
#'
#' [coef()]
#'
#' @export
coef.brglmFit <- function(object, model = c("mean", "full", "dispersion"), ...) {
model <- match.arg(model)
switch(model,
"mean" = {
object$coefficients
},
"dispersion" = {
transDisp <- object$transformed_dispersion
names(transDisp) <- paste0(object$transformation, "(dispersion)")
transDisp
## This will ALWAYS be on the scale of the TRANSFORMED dispersion
},
"full" = {
transDisp <- object$transformed_dispersion
ntd <- paste0(object$transformation, "(dispersion)")
names(transDisp) <- ntd
betas <- object$coefficients
thetaTrans <- c(betas, transDisp)
## if (object$type == "correction") {
## bcf <- attr(betas, "biases")
## btd <- attr(transDisp, "biases")
## names(btd) <- ntd
## attr(thetaTrans, "biases") <- c(bcf, btd)
## }
thetaTrans
})
}
#' [summary()] method for [brglmFit] objects
#'
#' @inheritParams stats::summary.glm
#'
#' @details The interface of the summary method for [`"brglmFit"`][brglmFit]
#' objects is identical to that of [`"glm"`][glm] objects. The summary
#' method for [`"brglmFit"`][brglmFit] objects computes the p-values of the
#' individual Wald statistics based on the standard normal
#' distribution, unless the family is Gaussian, in which case a t
#' distribution with appropriate degrees of freedom is used.
#'
#' @seealso [summary.glm()] and [glm()]
#'
#' @examples
#' ## For examples see `examples(brglmFit)`
#'
#' @method summary brglmFit
#' @export
summary.brglmFit <- function(object, dispersion = NULL,
correlation = FALSE, symbolic.cor = FALSE,
...) {
if (is.null(dispersion)) {
if (object$family$family == "Gaussian") {
dispersion <- NULL
} else {
dispersion <- object$dispersion
}
}
out <- summary.glm(object, dispersion = dispersion,
correlation = correlation,
symbolic.cor = symbolic.cor, ...)
out$type <- object$type
class(out) <- c("summary.brglmFit", class(out))
out
}
#' Method for computing confidence intervals for one or more
#' regression parameters in a [`"brglmFit"`][brglmFit] object
#'
#' @inheritParams stats::confint
#'
#' @method confint brglmFit
#' @export
confint.brglmFit <- function(object, parm, level = 0.95, ...) {
confint.default(object, parm, level, ...)
}
#' Return the variance-covariance matrix for the regression parameters
#' in a [brglmFit()] object
#'
#' @inheritParams stats::vcov.glm
#' @param model character specifying for which component of the model coefficients should be extracted.
#'
#' @details
#'
#' The options for `model` are `"mean"` for mean regression parameters
#' only (default), `"dispersion"` for the dispersion parameter (or the
#' transformed dispersion; see [brglm_control()]), and `"full"` for
#' both the mean regression and the (transformed) dispersion
#' parameters.
#'
#' @method vcov brglmFit
#' @export
vcov.brglmFit <- function(object, model = c("mean", "full", "dispersion"), complete = TRUE, ...) {
model <- match.arg(model)
switch(model,
mean = {
vcov(summary.brglmFit(object, ...), complete = complete)
},
dispersion = {
vtd <- 1/object$info_transformed_dispersion
ntd <- paste0(object$transformation, "(dispersion)")
names(vtd) <- ntd
vtd
},
full = {
vbetas <- vcov(summary.brglmFit(object, ...), complete = complete)
vtd <- 1/object$info_transformed_dispersion
nBetasAll <- c(rownames(vbetas), paste0(object$transformation, "(dispersion)"))
vBetasAll <- cbind(rbind(vbetas, 0),
c(numeric(nrow(vbetas)), vtd))
dimnames(vBetasAll) <- list(nBetasAll, nBetasAll)
vBetasAll
})
}
DD <- function(expr,name, order = 1) {
if(order < 1) stop("'order' must be >= 1")
if(order == 1) D(expr,name)
else DD(D(expr, name), name, order - 1)
}
## Almost all code in print.summary.brglmFit is from
## stats:::print.summary.glm apart from minor modifications
#' @rdname summary.brglmFit
#' @method print summary.brglmFit
#' @export
print.summary.brglmFit <- function (x, digits = max(3L, getOption("digits") - 3L),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...) {
cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"),
"\n\n", sep = "")
cat("Deviance Residuals: \n")
if (x$df.residual > 5) {
x$deviance.resid <- setNames(quantile(x$deviance.resid,
na.rm = TRUE), c("Min", "1Q", "Median", "3Q", "Max"))
}
xx <- zapsmall(x$deviance.resid, digits + 1L)
print.default(xx, digits = digits, na.print = "", print.gap = 2L)
if (length(x$aliased) == 0L) {
cat("\nNo Coefficients\n")
} else {
df <- if ("df" %in% names(x))
x[["df"]]
else NULL
if (!is.null(df) && (nsingular <- df[3L] - df[1L]))
cat("\nCoefficients: (", nsingular, " not defined because of singularities)\n",
sep = "")
else cat("\nCoefficients:\n")
coefs <- x$coefficients
if (!is.null(aliased <- x$aliased) && any(aliased)) {
cn <- names(aliased)
coefs <- matrix(NA, length(aliased), 4L, dimnames = list(cn,
colnames(coefs)))
coefs[!aliased, ] <- x$coefficients
}
printCoefmat(coefs, digits = digits, signif.stars = signif.stars,
na.print = "NA", ...)
}
cat("\n(Dispersion parameter for ", x$family$family, " family taken to be ",
format(x$dispersion), ")\n\n", apply(cbind(paste(format(c("Null",
"Residual"), justify = "right"), "deviance:"), format(unlist(x[c("null.deviance",
"deviance")]), digits = max(5L, digits + 1L)), " on",
format(unlist(x[c("df.null", "df.residual")])), " degrees of freedom\n"),
1L, paste, collapse = " "), sep = "")
if (nzchar(mess <- naprint(x$na.action)))
cat(" (", mess, ")\n", sep = "")
cat("AIC: ", format(x$aic, digits = max(4L, digits + 1L)))
cat("\n\nType of estimator:", x$type, get_type_description(x$type))
cat("\n", "Number of Fisher Scoring iterations: ", x$iter, "\n", sep = "")
correl <- x$correlation
if (!is.null(correl)) {
p <- NCOL(correl)
if (p > 1) {
cat("\nCorrelation of Coefficients:\n")
if (is.logical(symbolic.cor) && symbolic.cor) {
print(symnum(correl, abbr.colnames = NULL))
} else {
correl <- format(round(correl, 2L), nsmall = 2L,
digits = digits)
correl[!lower.tri(correl)] <- ""
print(correl[-1, -p, drop = FALSE], quote = FALSE)
}
}
}
invisible(x)
}
|