1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
# Copyright (C) 2016- Ioannis Kosmidis
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 or 3 of the License
# (at your option).
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#' Bias reduction for multinomial response models using the
#' Poisson trick.
#'
#' [brmultinom()] is a wrapper of [brglmFit()] that fits multinomial
#' regression models using implicit and explicit bias reduction
#' methods. See Kosmidis & Firth (2011) for details.
#'
#' @inheritParams nnet::multinom
#' @param control a list of parameters for controlling the fitting
#' process. See [brglmControl()] for details.
#' @param ref the reference category to use for multinomial
#' regression. Either an integer, in which case
#' `levels(response)[ref]` is used as a baseline, or a character
#' string. Default is 1.
#' @param x should the model matrix be included with in the result
#' (default is `TRUE`).
#' @param ... arguments to be used to form the default `control`
#' argument if it is not supplied directly.
#'
#' @details
#'
#' The models [brmultinom()] handles are also known as
#' baseline-category logit models (see, Agresti, 2002, Section 7.1),
#' because they model the log-odds of every category against a
#' baseline category. The user can control which baseline (or
#' reference) category is used via the `ref`. By default
#' [brmultinom()] uses the first category as reference.
#'
#' The maximum likelihood estimates for the parameters of
#' baseline-category logit models have infinite components with
#' positive probability, which can result in problems in their
#' estimation and the use of inferential procedures (e.g. Wad
#' tests). Albert and Andreson (1984) have categorized the possible
#' data patterns for such models into the exclusive and exhaustive
#' categories of complete separation, quasi-complete separation and
#' overlap, and showed that infinite maximum likelihood estimates
#' result when complete or quasi-complete separation occurs.
#'
#' The adjusted score approaches to bias reduction that [brmultinom()]
#' implements for `type = "AS_mean"` and `type = "AS_median"` are
#' alternatives to maximum likelihood that result in estimates with
#' smaller asymptotic mean and median bias, respectively, that are
#' also *always* finite, even in cases of complete or quasi-complete
#' separation.
#'
#' [brmultinom()] is a wrapper of [brglmFit()] that fits multinomial
#' logit regression models through the 'Poisson trick' (see, for
#' example, Palmgren, 1981; Kosmidis & Firth, 2011).
#'
#' The implementation relies on the construction of an extended model
#' matrix for the log-linear model and constraints on the sums of the
#' Poisson means. Specifically, a log-linear model is fitted on a
#' [Kronecker
#' product](https://en.wikipedia.org/wiki/Kronecker_product) of the
#' original model matrix `X` implied by the formula, augmented by
#' `nrow(X)` dummy variables.
#'
#' The extended model matrix is sparse, and the
#' [\pkg{Matrix}](https://cran.r-project.org/package=Matrix) package is
#' used for its effective storage.
#'
#' While [brmultinom()] can be used for analyses using multinomial
#' regression models, the current implementation is more of a proof of
#' concept and is not expected to scale well with either of `nrow(X)`,
#' `ncol(X)` or the number of levels in the categorical response.
#'
#' @author Ioannis Kosmidis `[aut, cre]` \email{ioannis.kosmidis@warwick.ac.uk}
#'
#' @seealso [nnet::multinom()], [bracl()] for adjacent category logit models for ordinal responses
#'
#' @references
#'
#' Kosmidis I, Kenne Pagui E C, Sartori N (2020). Mean and median bias
#' reduction in generalized linear models. *Statistics and Computing*,
#' **30**, 43-59. \doi{10.1007/s11222-019-09860-6}.
#'
#' Agresti A (2002). *Categorical data analysis* (2nd edition). Wiley
#' Series in Probability and Statistics. Wiley.
#'
#' Albert A, Anderson J A (1984). On the Existence of Maximum
#' Likelihood Estimates in Logistic Regression Models. *Biometrika*,
#' **71** 1--10. \doi{10.2307/2336390}.
#'
#' Kosmidis I, Firth D (2011). Multinomial logit bias reduction
#' via the Poisson log-linear model. *Biometrika*, **98**, 755-759.
#' \doi{10.1093/biomet/asr026}.
#'
#' Palmgren, J (1981). The Fisher Information Matrix for Log Linear
#' Models Arguing Conditionally on Observed Explanatory
#' Variables. *Biometrika*, **68**, 563-566.
#' \doi{10.1093/biomet/68.2.563}.
#'
#' @examples
#' ## The housing data analysis from ?MASS::housing
#'
#' data("housing", package = "MASS")
#'
#' # Maximum likelihood using nnet::multinom
#' houseML1nnet <- nnet::multinom(Sat ~ Infl + Type + Cont, weights = Freq,
#' data = housing)
#' # Maximum likelihood using brmultinom with baseline category 'Low'
#' houseML1 <- brmultinom(Sat ~ Infl + Type + Cont, weights = Freq,
#' data = housing, type = "ML", ref = 1)
#' # The estimates are numerically the same as houseML0
#' all.equal(coef(houseML1nnet), coef(houseML1), tolerance = 1e-04)
#'
#' # Maximum likelihood using brmultinom with 'High' as baseline
#' houseML3 <- brmultinom(Sat ~ Infl + Type + Cont, weights = Freq,
#' data = housing, type = "ML", ref = 3)
#' # The fitted values are the same as houseML1
#' all.equal(fitted(houseML3), fitted(houseML1), tolerance = 1e-10)
#'
#' # Bias reduction
#' houseBR3 <- update(houseML3, type = "AS_mean")
#' # Bias correction
#' houseBC3 <- update(houseML3, type = "correction")
#'
#' ## Reproducing Bull et al. (2002, Table 3)
#' data("hepatitis", package = "brglm2")
#'
#' # Construct a variable with the multinomial categories according to
#' # the HCV and nonABC columns
#' hepat <- hepatitis
#' hepat$type <- with(hepat, factor(1 - HCV * nonABC + HCV + 2 * nonABC))
#' hepat$type <- factor(hepat$type, labels = c("noDisease", "C", "nonABC"))
#' contrasts(hepat$type) <- contr.treatment(3, base = 1)
#'
#' # Maximum likelihood estimation fails to converge because some estimates are infinite
#' hepML <- brmultinom(type ~ group * time, data = hepat, weights = counts, type = "ML", slowit = 0.1)
#'
#' # Mean bias reduction returns finite estimates
#' hep_meanBR <- brmultinom(type ~ group * time, data = hepat, weights = counts, type = "AS_mean")
#' # The estimates in Bull et al. (2002, Table 3, DOI: 10.1016/S0167-9473(01)00048-2)
#' coef(hep_meanBR)
#'
#' # Median bias reduction also returns finite estimates, which are a bit larger in absolute value
#' hep_medianBR <- brmultinom(type ~ group * time, data = hepat, weights = counts, type = "AS_median")
#' coef(hep_medianBR)
#'
#' @export
brmultinom <- function(formula, data, weights, subset, na.action,
contrasts = NULL, ref = 1,
model = TRUE, x = TRUE,
control = list(...), ...) {
call <- match.call()
if (missing(data)) {
data <- environment(formula)
}
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "weights", "na.action", "offset"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- quote(model.frame)
mf <- eval.parent(mf)
Terms <- attr(mf, "terms")
X <- model.matrix(Terms, mf, contrasts)
Xcontrasts <- attr(X, "contrasts")
Y <- model.response(mf, "any")
## The chunk of code between +BEGIN and +END has been adopted from
## nnet::multinom
##+BEGIN
if (!is.matrix(Y)) {
Y <- as.factor(Y)
lev <- levels(Y)
} else {
lev <- colnames(Y)
}
w <- model.weights(mf)
if (length(w) == 0L)
if (is.matrix(Y))
w <- rep(1, dim(Y)[1L])
else w <- rep(1, length(Y))
if (is.factor(Y)) {
counts <- table(Y)
if (any(counts == 0L)) {
empty <- lev[counts == 0L]
warning(sprintf(ngettext(length(empty), "group %s is empty",
"groups %s are empty"), paste(sQuote(empty),
collapse = " ")), domain = NA)
Y <- factor(Y, levels = lev[counts > 0L])
lev <- lev[counts > 0L]
}
if (length(lev) < 2L)
stop("need two or more classes to fit a multinomial logit model")
## if (length(lev) == 2L)
## Y <- as.integer(Y) - 1
else Y <- nnet::class.ind(Y)
}
##+END
ncat <- if (is.matrix(Y)) ncol(Y) else length(lev)
nvar <- ncol(X)
if (is.character(ref)) {
refc <- ref
ref <- match(ref, lev, nomatch = NA)
if (is.na(ref)) stop("reference category ", refc, " does not exist")
}
keep <- w > 0
nkeep <- sum(keep)
fixed_totals <- rep(seq.int(nkeep), ncat)
## Set up the model matrix for the poisson fit
Xnuisance <- Matrix::Diagonal(nkeep)
Xextended <- cbind(Matrix::kronecker(rep(1, ncat), Xnuisance),
Matrix::kronecker(Matrix::Diagonal(ncat)[, -ref, drop = FALSE], X[keep, ]))
int <- seq.int(nkeep)
## Set up the extended response
Yextended <- c(Y[keep] * w[keep])
nd <- paste0("%0", nchar(max(int)), "d")
colnames(Xextended) <- c(paste0(".nuisance", sprintf(nd, int)),
## CHECK: lev[-1] contrasts?
ofInterest <- paste(rep(lev[-ref], each = nvar),
rep(colnames(X), ncat - 1), sep = ":"))
fit <- brglmFit(x = Xextended, y = Yextended,
start = NULL,
family = poisson("log"), control = control, intercept = TRUE, fixed_totals = fixed_totals)
## TODO:
## + starting values
## + subset
## + na.action
## + control
## Fitted values
fitted <- do.call("rbind", tapply(fit$fitted, fixed_totals, function(x) x/sum(x)))
rownames(fitted) <- rownames(X)[keep]
colnames(fitted) <- lev
fit$fitted.values <- fitted
fit$call <- call
## fit$fitted.values <- matrix(fit$fitted.values, ncol = ncat)/w[keep]
## rownames(fit$fitted.values) <- rownames(X)[keep]
## colnames(fit$fitted.values) <- lev
class(fit) <- c("brmultinom", fit$class, "glm")
fit$ofInterest <- ofInterest
fit$ncat <- ncat
fit$lev <- lev
fit$ref <- ref
if (model) {
fit$model <- mf
}
if (x) {
fit$x <- X
}
fit$contrasts <- attr(X, "contrasts")
fit$xlevels = .getXlevels(Terms, mf)
fit$terms <- Terms
fit$coefNames <- colnames(X)
fit$null.deviance <- NULL
fit
}
#' @method fitted brmultinom
#' @export
fitted.brmultinom <- function(object, ...) {
object$fitted.values
}
#' Residuals for multinomial logistic regression and adjacent category logit models
#'
#' @param object the object coming out of [bracl()] and
#' [brmultinom()].
#' @param type the type of residuals which should be returned. The
#' options are: `"pearson"` (default), `"response"`, `"deviance"`,
#' `"working"`. See Details.
#' @param ... Currently not used.
#'
#' @details
#'
#' The residuals computed are the residuals from the equivalent
#' Poisson log-linear model fit, organized in a form that matches the
#' output of `fitted(object, type = "probs")`. As a result, the output
#' is residuals defined in terms of the object and expected
#' multinomial counts.
#'
#' @seealso brmultinom bracl
#'
#' @method residuals brmultinom
#' @export
residuals.brmultinom <- function(object, type = c("pearson", "response", "deviance", "working"), ...) {
type <- match.arg(type)
## This is a Poisson log-linear models, so the working weights are
## the fitted counts
fitted <- weights(object, type = "working")
## The poisson responses
y <- object$y
out <- switch(type,
"pearson" = (y - fitted)/sqrt(fitted),
"response" = (y - fitted),
"working" = object$residuals,
"deviance" = object$family$dev.resids(y, fitted, 1))
matrix(out, ncol = object$ncat, dimnames = dimnames(fitted(object)))
}
#' @method coef brmultinom
#' @export
coef.brmultinom <- function(object, ...) {
if (length(object$ofInterest)) {
with(object, {
coefs <- matrix(coefficients[ofInterest], nrow = ncat - 1, byrow = TRUE)
dimnames(coefs) <- list(lev[-object$ref], coefNames)
coefs
})
} else {
NULL
}
}
#' @method print brmultinom
#' @export
print.brmultinom <- function(x, digits = max(5L, getOption("digits") - 3L), ...) {
if (!is.null(cl <- x$call)) {
cat("Call:\n")
dput(cl, control = NULL)
}
cat("\nCoefficients:\n")
if (is.null(coef(x))) {
print("No coefficients")
} else {
print(format(coef(x), digits = digits), print.gap = 2, quote = FALSE)
}
cat("\nResidual Deviance:", format(x$deviance), "\n")
}
#' @method logLik brmultinom
#' @export
logLik.brmultinom <- function(object, ...) {
structure(-object$deviance/2,
df = sum(!is.na(coef(object))),
nobs = sum(object$weights),
class = "logLik")
}
#' @method summary brmultinom
#' @export
summary.brmultinom <- function(object, correlation = FALSE, digits = options()$digits, Wald.ratios = FALSE, ...) {
ncat <- object$ncat
coefficients <- coef.brmultinom(object)
object$digits <- digits
object$AIC <- AIC(object)
object$logLik <- logLik(object)
if (is.null(coefficients)) {
object$coefficients <- NULL
object$standard.errors <- NULL
if (Wald.ratios)
object$Wald.ratios <- NULL
if (correlation)
object$correlation <- NULL
} else {
vc <- vcov.brglmFit(object)
vc <- vc[object$ofInterest, object$ofInterest]
se <- sqrt(diag(vc))
ses <- matrix(se, nrow = ncat - 1, byrow = TRUE, dimnames = dimnames(coefficients))
object$coefficients <- coefficients
object$standard.errors <- ses
## object$AIC <- AIC(object)
if (Wald.ratios) {
object$Wald.ratios <- coefficients/ses
object$Wald.pvalues <- 2 * pnorm(-abs(object$Wald.ratios))
}
if (correlation)
object$correlation <- vc/outer(se, se)
}
class(object) <- "summary.brmultinom"
object
}
#' @method vcov brmultinom
#' @export
vcov.brmultinom <- function(object, ...) {
vc <- vcov.brglmFit(object, ...)
vc <- vc[object$ofInterest, object$ofInterest]
vc
}
#' @method print summary.brmultinom
#' @export
print.summary.brmultinom <- function(x, digits = x$digits, ...)
{
if (!is.null(cl <- x$call)) {
cat("Call:\n")
dput(cl, control = NULL)
}
cat("\nCoefficients:\n")
print(x$coefficients, digits = digits)
cat("\nStd. Errors:\n")
print(x$standard.errors, digits = digits)
if (!is.null(x$Wald.ratios)) {
cat("\nValue/SE (Wald statistics):\n")
print(x$coefficients/x$standard.errors, digits = digits)
}
cat("\nResidual Deviance:", format(x$deviance), "\n")
cat("Log-likelihood:", format(x$logLik), "\n")
cat("AIC:", format(x$AIC))
cat("\n\nType of estimator:", x$type, get_type_description(x$type))
cat("\n", "Number of Fisher Scoring iterations: ", x$iter, "\n", sep = "")
if (!is.null(correl <- x$correlation)) {
p <- dim(correl)[2L]
if (p > 1) {
cat("\nCorrelation of Coefficients:\n")
ll <- lower.tri(correl)
correl[ll] <- format(round(correl[ll], digits))
correl[!ll] <- ""
print(correl[-1L, -p], quote = FALSE, ...)
}
}
invisible(x)
}
#' Predict method for [brmultinom] fits
#'
#' Obtain class and probability predictions from a fitted baseline
#' category logits model.
#'
#' @param object a fitted object of class inheriting from
#' [`"brmultinom"`][brmultinom].
#' @param newdata optionally, a data frame in which to look for
#' variables with which to predict. If omitted, the fitted linear
#' predictors are used.
#' @param type the type of prediction required. The default is
#' `"class"`, which produces predictions of the response category
#' at the covariate values supplied in `"newdata"`, selecting the
#' category with the largest probability; the alternative
#' `"probs"` returns all category probabilities at the covariate
#' values supplied in `newdata`.
#' @param ... further arguments passed to or from other methods.
#'
#'
#' @details
#'
#' If `newdata` is omitted the predictions are based on the data used
#' for the fit.
#'
#' @return
#'
#' If `type = "class"` a vector with the predicted response
#' categories; if `type = "probs"` a matrix of probabilities for all
#' response categories at `newdata`.
#'
#' @examples
#'
#' data("housing", package = "MASS")
#'
#' # Maximum likelihood using brmultinom with baseline category 'Low'
#' houseML1 <- brmultinom(Sat ~ Infl + Type + Cont, weights = Freq,
#' data = housing, type = "ML", ref = 1)
#'
#' # New data
#' newdata <- expand.grid(Infl = c("Low", "Medium"),
#' Type = c("Tower", "Atrium", "Terrace"),
#' Cont = c("Low", NA, "High"))
#'
#' ## Predictions
#' sapply(c("class", "probs"), function(what) predict(houseML1, newdata, what))
#'
#' @method predict brmultinom
#' @export
predict.brmultinom <- function(object, newdata, type = c("class", "probs"), ...) {
## Adapted from nnet:::predict.multinom
if (!inherits(object, "brmultinom"))
stop("not a \"brmultinom\" fit")
type <- match.arg(type)
X <- if (missing(newdata)) model.matrix(object) else model.matrix(object, data = newdata)
rn <- attr(X, "rn_data")
keep <- attr(X, "rn_kept")
coefs <- coef(object)
fits <- matrix(0, nrow = nrow(X), ncol = object$ncat, dimnames = list(rn[keep], object$lev))
fits1 <- apply(coefs, 1, function(b) X %*% b)
fits[, rownames(coefs)] <- fits1
Y1 <- t(apply(fits, 1, function(x) exp(x) / sum(exp(x))))
Y <- matrix(NA, length(rn), ncol(Y1), dimnames = list(rn, colnames(Y1)))
Y[keep, ] <- Y1
switch(type, class = {
if (length(object$lev) > 2L) Y <- factor(max.col(Y),
levels = seq_along(object$lev), labels = object$lev)
if (length(object$lev) == 2L) Y <- factor(1 + (Y > 0.5),
levels = 1L:2L, labels = object$lev)
if (length(object$lev) == 0L) Y <- factor(max.col(Y),
levels = seq_along(object$lab), labels = object$lab)
}, probs = {
})
drop(Y)
}
#' @method model.matrix brmultinom
#' @export
model.matrix.brmultinom <- function(object, data, ...) {
if (!inherits(object, "brmultinom"))
stop("not a \"brmultinom\" fit")
if (missing(data)) {
data <- model.frame(object)
} else {
data <- as.data.frame(data)
}
Terms <- delete.response(object$terms)
m <- model.frame(Terms, data, na.action = na.omit,
xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
X <- model.matrix(Terms, m, contrasts = object$contrasts)
rn <- row.names(data)
attr(X, "rn_data") <- rn
attr(X, "rn_kept") <- match(row.names(m), rn)
X
}
#' Method for computing confidence intervals for one or more
#' regression parameters in a [`"brmultinom"`][brmultinom] object
#'
#' @inheritParams stats::confint
#'
#' @export
confint.brmultinom <- function (object, parm, level = 0.95, ...) {
## Apart from formatting changes this function is identical to
## nnet:::confint.multinom
cf <- coef(object)
pnames <- if (is.matrix(cf)) colnames(cf) else names(cf)
if (missing(parm)) {
parm <- seq_along(pnames)
} else {
if (is.character(parm)) {
parm <- match(parm, pnames, nomatch = 0L)
}
}
a <- (1 - level) / 2
a <- c(a, 1 - a)
pct <- paste(round(100 * a, 1), "%")
fac <- qnorm(a)
if (is.matrix(cf)) {
ses <- matrix(sqrt(diag(vcov(object))), ncol = ncol(cf),
byrow = TRUE)[, parm, drop = FALSE]
cf <- cf[, parm, drop = FALSE]
ci <- array(NA, dim = c(dim(cf), 2L), dimnames = c(dimnames(cf),
list(pct)))
ci[, , 1L] <- cf + ses * fac[1L]
ci[, , 2L] <- cf + ses * fac[2L]
aperm(ci, c(2L, 3L, 1L))
} else {
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(pnames[parm],
pct))
ses <- sqrt(diag(vcov(object)))[parm]
ci[] <- cf[parm] + ses %o% fac
ci
}
}
#' Method for simulating a data set from [`"brmultinom"`][brmultinom] and [`"bracl"`][bracl]
#' objects
#'
#' @param object an object of class [`"brmultinom"`][brmultinom] or [`"bracl"`][bracl].
#' @param ... currently not used.
#'
#' @return
#'
#' A [`"data.frame"`][data.frame] with `object$ncat` times the rows that
#' `model.frame(object)` have and the same variables. If `weights` has
#' been specified in the call that generated `object`, then the
#' simulate frequencies will populate the weights variable. Otherwise,
#' the resulting [data.frame] will have a `".weights"` variable with
#' the simulated multinomial counts.
#'
#' @examples
#'
#' ## Multinomial logistic regression
#' data("housing", package = "MASS")
#' houseML1 <- brmultinom(Sat ~ Infl + Type + Cont, weights = Freq,
#' data = housing, type = "ML", ref = 1)
#' simulate(houseML1)
#'
#' ## Adjacent-category logits
#' data("stemcell", package = "brglm2")
#' stemML1 <- bracl(research ~ religion + gender, weights = frequency,
#' data = stemcell, type = "ML")
#'
#' simulate(stemML1)
#'
#' @export
simulate.brmultinom <- function(object, ...) {
mf <- model.frame(object)
probs <- predict(object, type = "probs")
categories <- colnames(probs)
ncat <- object$ncat
weights <- model.weights(mf)
if (is.null(weights)) {
weights <- rep.int(1L, nrow(mf))
}
samples <- sapply(1:nrow(probs), function(j) rmultinom(1, weights[j], probs[j, ]))
mf <- mf[rep(1:nrow(mf), each = ncat), ]
mf[, 1] <- factor(colnames(probs),
levels = levels(mf[, 1]),
ordered = is.ordered(mf[, 1]))
weights_ind <- grep("(weights)", names(mf))
if (length(weights_ind)) {
weights_nam <- as.character(object$call$weights)
names(mf)[weights_ind] <- weights_nam
} else {
weights_nam <- ".weights"
}
mf[[weights_nam]] <- c(samples)
mf
}
|