File: data.R

package info (click to toggle)
r-cran-brglm2 0.9.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 872 kB
  • sloc: ansic: 52; makefile: 5
file content (296 lines) | stat: -rw-r--r-- 10,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#' Habitat preferences of lizards
#'
#' @format A data frame with 23 rows and 6 columns:
#'
#' * `grahami`. count of grahami lizards
#' * `opalinus`. count of opalinus lizards
#' * `height`. a factor with levels `<5ft`, `>=5ft`
#' * `diameter`. a factor with levels `<=2in`, `>2in`
#' * `light`. a factor with levels `sunny`, `shady`
#' * `time`. a factor with levels `early`, `midday`, `late`
#'
#' The variables `grahami` and `opalinus` are counts of two lizard
#' species at two different perch heights, two different perch
#' diameters, in sun and in shade, at three times of day.
#'
#' @seealso
#'
#' [brglm_fit()]

#'
#' @source
#'
#'   McCullagh P, Nelder J A (1989) _Generalized Linear
#'   Models_ (2nd Edition).  London: Chapman and Hall.
#'
#' Originally from
#'
#'     Schoener T W (1970) Nonsynchronous spatial overlap of lizards
#'     in patchy habitats.  _Ecology_ *51*, 408-418.
#'
"lizards"

#' Histology grade and risk factors for 79 cases of endometrial cancer
#'
#' @format A data frame with 79 rows and 4 variables:
#'
#' * `NV`: neovasculization with coding 0 for absent and 1 for present
#' * `PI`: pulsality index of arteria uterina
#' * `EH`: endometrium height
#' * `HG` histology grade with coding 0 for low grade and 1 for high grade
#'
#' @source The packaged data set was downloaded in `.dat` format from
#'     \url{https://users.stat.ufl.edu/~aa/glm/data/}. The latter link
#'     provides the data sets used in Agresti (2015).
#'
#'     The endometrial data set was first analyzed in Heinze and
#'     Schemper (2002), and was originally provided by Dr
#'     E. Asseryanis from the Medical University of Vienna.
#'
#' @seealso
#'
#' [brglm_fit()]
#'
#'
#' @references
#'
#' Agresti A (2015). *Foundations of Linear and Generalized Linear
#' Models*.  Wiley Series in Probability and Statistics. Wiley.
#'
#' Heinze G, Schemper M (2002). A Solution to the Problem of
#' Separation in Logistic Regression. *Statistics in Medicine*,
#' **21**, 2409–2419. \doi{10.1002/sim.1047}.
#'
#' Kosmidis I, Firth D (2021). Jeffreys-prior penalty, finiteness
#' and shrinkage in binomial-response generalized linear
#' models. *Biometrika*, **108**, 71-82. \doi{10.1093/biomet/asaa052}.
#'
#'
"endometrial"


#' Coalition data
#'
#' This data set contains survival data on government coalitions in
#' parliamentary democracies (Belgium, Canada, Denmark, Finland,
#' France, Iceland, Ireland, Israel, Italy, Netherlands, Norway,
#' Portugal, Spain, Sweden, and the United Kingdom) for the period
#' 1945-1987.  For parsimony, country indicator variables are omitted
#' in the sample data.
#'
#' @format
#'
#' A data frame with 314 rows and the 7 variables "duration",
#' "ciep12", "invest", "fract", "polar", "numst2", and "crisis".  For
#' variable descriptions, please refer to King et al (1990).
#'
#' @note
#'
#' Data is as it is provided by the
#' [\pkg{Zeilig}](https://cran.r-project.org/package=Zelig) R package.
#'
#' @seealso
#'
#' [brglm_fit()]
#'
#' @references
#'
#'  King G, Alt J E, Burns N E, Laver M. (1990). A Unified
#'  Model of Cabinet Dissolution in Parliamentary
#'  Democracies. *American Journal of Political Science*, **34**,
#'  846-870. \doi{10.2307/2111401}.
#'
#'  King G, Alt J E, Burns N E, Laver M. ICPSR
#'  Publication Related Archive, 1115.
#'
"coalition"

#' The effects of AZT in slowing the development of AIDS symptoms
#'
#' The data is from a 3-year study on the effects of AZT in slowing the
#' development of AIDS symptoms. 338 veterans whose immune systems
#' were beginning to falter after infection with the AIDS virus were
#' randomly assigned either to receive AZT immediately or to wait
#' until their T cells showed severe immune weakness.
#'
#' @format A data frame with 4 rows and 4 variables:
#'
#' * `symptomatic`: counts of veterans showing AIDS symptoms during the 3-year study
#'
#' * `asymptomatic`: counts of veterans not showing AIDS symptoms during the 3-year study
#'
#' * `race`: the race of the veterans with levels `"White"` and `"Black"`
#'
#' * `AZT_use`: whether the veterans received AZT immediately (`"Yes"`)
#' or waited until their T cells showed severe immune weakness (`"No"`)
#'
#' @source
#'
#' The data set is analyzed in Agresti (2002, Subsection 5.4.2). Its
#' original source is New York Times, Feb. 15, 1991.
#'
#' @seealso
#'
#' [brmultinom()]
#'
#' @references
#'
#' Agresti A (2002). *Categorical Data Analysis*.  Wiley Series in
#' Probability and Statistics. Wiley.
"aids"

#' Alligator food choice data
#'
#' @format A data frame with 80 rows and 5 variables:
#'
#' * `foodchoice`: primary food type, in volume, found in an alligator’s stomach, with levels `fish`, `invertebrate`,`reptile`, `bird`, `other`
#' * `lake`: lake of capture with levels `Hancock`, `Oklawaha`, `Trafford`, `George`.
#' * `gender`: gender of the alligator with levels `Male` and `Female`
#' * `size`: size of the alligator with levels `<=2.3` meters long and `>2.3` meters long
#' * `freq`: number of alligators for each foodchoice, lake, gender and size combination
#'
#'
#' @source
#'
#' The alligators data set is analyzed in Agresti (2002, Subsection 7.1.2).
#'
#' @seealso
#'
#' [brmultinom()]
#'
#' @references
#'
#' Agresti A (2002). *Categorical Data Analysis*.  Wiley Series in
#' Probability and Statistics. Wiley.
#'
"alligators"



#' Opinion on Stem Cell Research and Religious Fundamentalism
#'
#' A data set from the 2006 General Social Survey that shows the
#' relationship in the United States between opinion about funding
#' stem cell research and the fundamentalism/liberalism of one’s
#' religious beliefs, stratified by gender.
#'
#' @format A data frame with 24 rows and 4 variables:
#'
#' * `research`: opinion about funding stem cell research with levels `definitely`, `probably`, `probably not`, `definitely not`
#' * `gender`: the gender of the respondent with levels `female` and `male`
#' * `religion`: the fundamentalism/liberalism of one’s religious beliefs with levels `fundamentalist`, `moderate`,
#' `liberal`
#' `frequency`: the number of times a respondent fell in each of the combinations of levels for `research`, `religion` and `gender`
#'
#'
#' @seealso
#'
#' [bracl()]
#'
#' @source
#'
#' The `stemcell` data set is analyzed in Agresti (2010, Subsection 4.1.5).
#'
#' @references
#'
#' Agresti A (2010). *Analysis of Ordinal Categorical Data* (2nd edition).  Wiley Series in
#' Probability and Statistics. Wiley.
#'
"stemcell"


#' Post-transfusion hepatitis: impact of non-A, non-B hepatitis
#' surrogate tests
#'
#' Data from a randomized double-blind trial to assess whether
#' withholding donor blood positive for the non-A, non-B (`"NANB"`)
#' surrogate markers would reduce the frequency of post-transfusion
#' hepatitis.  The dataset contains `4588` subjects enrolled from 1988
#' to 1992 into two study groups that received allogenic blood from
#' which units positive for NANB surrogate markers were withheld (n =
#' `2311`) or not withheld (n = `2277`).  Subjects were followed up
#' for 6 months and assessed for the presence of post-transfusion
#' hepatitis.
#'
#' @format A data frame with 28 rows and the following 6 columns:
#'
#' * `city`: Subjects were recruited from 3 Canadian Red Cross Society
#' Blood Centres and 13 university-affiliated hospitals in 3 cities:
#' Toronto, Hamilton and Winnipeg.
#'
#' * `group`: Eligible subjects were assigned to one of two allogenic
#' blood recipient groups.  One group received products that had only
#' routine Canadian transfusion-transmissible disease marker screening
#' (no-withhold).  The other group received only products that were
#' not positive for NANB surrogate markers (withhold).
#'
#' * `time`: Hepatitis C (HCV) screening was introduced in Canada in
#' May, 1990.  Subjects were recruited into the study before (pre) and
#' after (post) the introduction of anti-HCV testing.
#'
#' * `HCV`: Post-transfusion HCV hepatitis present (1) or absent (0).
#'
#' * `nonABC`: Post-transfusion non-A, non-B, non-C hepatitis present (1) or absent (0)
#'
#' * `counts`: Number of subjects
#'
#' @source
#'
#' Data is from Blajchman et al. (1995), also analyzed in Bull et
#' al. (2002), and is also provided by the
#' [\pkg{pmlr}](https://cran.r-project.org/package=pmlr) R package.
#'
#' @references
#'
#' Bull S B, Mak C, Greenwood C M T (2002). A modified score function
#' estimator for multinomial logistic regression in small
#' samples. *Computational Statistics & Data Analysis*, **39**,
#' 57-74. \doi{10.1016/S0167-9473(01)00048-2}
#'
#' Blajchman M A, Bull S B and Feinman S V (1995). Post-transfusion
#' hepatitis: impact of non-A, non-B hepatitis surrogate tests. *The
#' Lancet*, **345**, 21--25. \doi{10.1016/S0140-6736(95)91153-7}
#'
"hepatitis"

#' Liver Enzyme Data
#'
#' Liver enzyme data collected from 218 patients with liver disease
#' (Plomteux, 1980). The laboratory profile consists of enzymatic
#' activity measured for four liver enzymes: aspartate
#' aminotransferase (`AST`), alanine aminotransferase (`ALT`),
#' glutamate dehydrogenase (`GLDH`) and ornithine carbamyltransferase
#' (`OCT`).
#'
#' @format A data frame with 218 rows and the following 6 columns:
#'
#' * `Patient`: Patient ID
#'
#' * `Group`: Four diagnostic groups were considered: acute viral
#' hepatitis (1), persistent chronic hepatitis (2), aggressive chronic
#' hepatitis (3) and post-necrotic cirrhosis (4).
#'
#' * `AST`: Aspartate aminotransferase (in U/L)
#'
#' * `ALT`: Alanine aminotransferase (in U/L)
#'
#' * `GLDH`: Glutamate dehydrogenase (in U/L)
#'
#' * `OCT`: Ornithine carbamyltransferase (in U/L)
#'
#' @source
#'
#' Data from Albert and Harris (1984, Chapter 5, Appendix I), and is
#' also provided by the
#' [\pkg{pmlr}](https://cran.r-project.org/package=pmlr) R package.
#'
#' @references
#'
#' Albert A, Harris E K (1984). *Multivariate Interpretation of
#' Clinical Laboratory Data*. Dekker: New York.
#'
#' Plomteux G (1980). Multivariate analysis of an enzyme profile for
#' the differential diagnosis of viral hepatitis. *Clinical
#' Chemistry*, **26**, 1897-1899.
#'
"enzymes"