1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#' Habitat preferences of lizards
#'
#' @format A data frame with 23 rows and 6 columns:
#'
#' * `grahami`. count of grahami lizards
#' * `opalinus`. count of opalinus lizards
#' * `height`. a factor with levels `<5ft`, `>=5ft`
#' * `diameter`. a factor with levels `<=2in`, `>2in`
#' * `light`. a factor with levels `sunny`, `shady`
#' * `time`. a factor with levels `early`, `midday`, `late`
#'
#' The variables `grahami` and `opalinus` are counts of two lizard
#' species at two different perch heights, two different perch
#' diameters, in sun and in shade, at three times of day.
#'
#' @seealso
#'
#' [brglm_fit()]
#'
#' @source
#'
#' McCullagh P, Nelder J A (1989) _Generalized Linear
#' Models_ (2nd Edition). London: Chapman and Hall.
#'
#' Originally from
#'
#' Schoener T W (1970) Nonsynchronous spatial overlap of lizards
#' in patchy habitats. _Ecology_ *51*, 408-418.
#'
"lizards"
#' Histology grade and risk factors for 79 cases of endometrial cancer
#'
#' @format A data frame with 79 rows and 4 variables:
#'
#' * `NV`: neovasculization with coding 0 for absent and 1 for present
#' * `PI`: pulsality index of arteria uterina
#' * `EH`: endometrium height
#' * `HG` histology grade with coding 0 for low grade and 1 for high grade
#'
#' @source The packaged data set was downloaded in `.dat` format from
#' \url{https://users.stat.ufl.edu/~aa/glm/data/}. The latter link
#' provides the data sets used in Agresti (2015).
#'
#' The endometrial data set was first analyzed in Heinze and
#' Schemper (2002), and was originally provided by Dr
#' E. Asseryanis from the Medical University of Vienna.
#'
#' @seealso
#'
#' [brglm_fit()]
#'
#'
#' @references
#'
#' Agresti A (2015). *Foundations of Linear and Generalized Linear
#' Models*. Wiley Series in Probability and Statistics. Wiley.
#'
#' Heinze G, Schemper M (2002). A Solution to the Problem of
#' Separation in Logistic Regression. *Statistics in Medicine*,
#' **21**, 2409–2419. \doi{10.1002/sim.1047}.
#'
#' Kosmidis I, Firth D (2021). Jeffreys-prior penalty, finiteness
#' and shrinkage in binomial-response generalized linear
#' models. *Biometrika*, **108**, 71-82. \doi{10.1093/biomet/asaa052}.
#'
#'
"endometrial"
#' Coalition data
#'
#' This data set contains survival data on government coalitions in
#' parliamentary democracies (Belgium, Canada, Denmark, Finland,
#' France, Iceland, Ireland, Israel, Italy, Netherlands, Norway,
#' Portugal, Spain, Sweden, and the United Kingdom) for the period
#' 1945-1987. For parsimony, country indicator variables are omitted
#' in the sample data.
#'
#' @format
#'
#' A data frame with 314 rows and the 7 variables "duration",
#' "ciep12", "invest", "fract", "polar", "numst2", and "crisis". For
#' variable descriptions, please refer to King et al (1990).
#'
#' @note
#'
#' Data is as it is provided by the
#' [\pkg{Zeilig}](https://cran.r-project.org/package=Zelig) R package.
#'
#' @seealso
#'
#' [brglm_fit()]
#'
#' @references
#'
#' King G, Alt J E, Burns N E, Laver M. (1990). A Unified
#' Model of Cabinet Dissolution in Parliamentary
#' Democracies. *American Journal of Political Science*, **34**,
#' 846-870. \doi{10.2307/2111401}.
#'
#' King G, Alt J E, Burns N E, Laver M. ICPSR
#' Publication Related Archive, 1115.
#'
"coalition"
#' The effects of AZT in slowing the development of AIDS symptoms
#'
#' The data is from a 3-year study on the effects of AZT in slowing the
#' development of AIDS symptoms. 338 veterans whose immune systems
#' were beginning to falter after infection with the AIDS virus were
#' randomly assigned either to receive AZT immediately or to wait
#' until their T cells showed severe immune weakness.
#'
#' @format A data frame with 4 rows and 4 variables:
#'
#' * `symptomatic`: counts of veterans showing AIDS symptoms during the 3-year study
#'
#' * `asymptomatic`: counts of veterans not showing AIDS symptoms during the 3-year study
#'
#' * `race`: the race of the veterans with levels `"White"` and `"Black"`
#'
#' * `AZT_use`: whether the veterans received AZT immediately (`"Yes"`)
#' or waited until their T cells showed severe immune weakness (`"No"`)
#'
#' @source
#'
#' The data set is analyzed in Agresti (2002, Subsection 5.4.2). Its
#' original source is New York Times, Feb. 15, 1991.
#'
#' @seealso
#'
#' [brmultinom()]
#'
#' @references
#'
#' Agresti A (2002). *Categorical Data Analysis*. Wiley Series in
#' Probability and Statistics. Wiley.
"aids"
#' Alligator food choice data
#'
#' @format A data frame with 80 rows and 5 variables:
#'
#' * `foodchoice`: primary food type, in volume, found in an alligator’s stomach, with levels `fish`, `invertebrate`,`reptile`, `bird`, `other`
#' * `lake`: lake of capture with levels `Hancock`, `Oklawaha`, `Trafford`, `George`.
#' * `gender`: gender of the alligator with levels `Male` and `Female`
#' * `size`: size of the alligator with levels `<=2.3` meters long and `>2.3` meters long
#' * `freq`: number of alligators for each foodchoice, lake, gender and size combination
#'
#'
#' @source
#'
#' The alligators data set is analyzed in Agresti (2002, Subsection 7.1.2).
#'
#' @seealso
#'
#' [brmultinom()]
#'
#' @references
#'
#' Agresti A (2002). *Categorical Data Analysis*. Wiley Series in
#' Probability and Statistics. Wiley.
#'
"alligators"
#' Opinion on Stem Cell Research and Religious Fundamentalism
#'
#' A data set from the 2006 General Social Survey that shows the
#' relationship in the United States between opinion about funding
#' stem cell research and the fundamentalism/liberalism of one’s
#' religious beliefs, stratified by gender.
#'
#' @format A data frame with 24 rows and 4 variables:
#'
#' * `research`: opinion about funding stem cell research with levels `definitely`, `probably`, `probably not`, `definitely not`
#' * `gender`: the gender of the respondent with levels `female` and `male`
#' * `religion`: the fundamentalism/liberalism of one’s religious beliefs with levels `fundamentalist`, `moderate`,
#' `liberal`
#' `frequency`: the number of times a respondent fell in each of the combinations of levels for `research`, `religion` and `gender`
#'
#'
#' @seealso
#'
#' [bracl()]
#'
#' @source
#'
#' The `stemcell` data set is analyzed in Agresti (2010, Subsection 4.1.5).
#'
#' @references
#'
#' Agresti A (2010). *Analysis of Ordinal Categorical Data* (2nd edition). Wiley Series in
#' Probability and Statistics. Wiley.
#'
"stemcell"
#' Post-transfusion hepatitis: impact of non-A, non-B hepatitis
#' surrogate tests
#'
#' Data from a randomized double-blind trial to assess whether
#' withholding donor blood positive for the non-A, non-B (`"NANB"`)
#' surrogate markers would reduce the frequency of post-transfusion
#' hepatitis. The dataset contains `4588` subjects enrolled from 1988
#' to 1992 into two study groups that received allogenic blood from
#' which units positive for NANB surrogate markers were withheld (n =
#' `2311`) or not withheld (n = `2277`). Subjects were followed up
#' for 6 months and assessed for the presence of post-transfusion
#' hepatitis.
#'
#' @format A data frame with 28 rows and the following 6 columns:
#'
#' * `city`: Subjects were recruited from 3 Canadian Red Cross Society
#' Blood Centres and 13 university-affiliated hospitals in 3 cities:
#' Toronto, Hamilton and Winnipeg.
#'
#' * `group`: Eligible subjects were assigned to one of two allogenic
#' blood recipient groups. One group received products that had only
#' routine Canadian transfusion-transmissible disease marker screening
#' (no-withhold). The other group received only products that were
#' not positive for NANB surrogate markers (withhold).
#'
#' * `time`: Hepatitis C (HCV) screening was introduced in Canada in
#' May, 1990. Subjects were recruited into the study before (pre) and
#' after (post) the introduction of anti-HCV testing.
#'
#' * `HCV`: Post-transfusion HCV hepatitis present (1) or absent (0).
#'
#' * `nonABC`: Post-transfusion non-A, non-B, non-C hepatitis present (1) or absent (0)
#'
#' * `counts`: Number of subjects
#'
#' @source
#'
#' Data is from Blajchman et al. (1995), also analyzed in Bull et
#' al. (2002), and is also provided by the
#' [\pkg{pmlr}](https://cran.r-project.org/package=pmlr) R package.
#'
#' @references
#'
#' Bull S B, Mak C, Greenwood C M T (2002). A modified score function
#' estimator for multinomial logistic regression in small
#' samples. *Computational Statistics & Data Analysis*, **39**,
#' 57-74. \doi{10.1016/S0167-9473(01)00048-2}
#'
#' Blajchman M A, Bull S B and Feinman S V (1995). Post-transfusion
#' hepatitis: impact of non-A, non-B hepatitis surrogate tests. *The
#' Lancet*, **345**, 21--25. \doi{10.1016/S0140-6736(95)91153-7}
#'
"hepatitis"
#' Liver Enzyme Data
#'
#' Liver enzyme data collected from 218 patients with liver disease
#' (Plomteux, 1980). The laboratory profile consists of enzymatic
#' activity measured for four liver enzymes: aspartate
#' aminotransferase (`AST`), alanine aminotransferase (`ALT`),
#' glutamate dehydrogenase (`GLDH`) and ornithine carbamyltransferase
#' (`OCT`).
#'
#' @format A data frame with 218 rows and the following 6 columns:
#'
#' * `Patient`: Patient ID
#'
#' * `Group`: Four diagnostic groups were considered: acute viral
#' hepatitis (1), persistent chronic hepatitis (2), aggressive chronic
#' hepatitis (3) and post-necrotic cirrhosis (4).
#'
#' * `AST`: Aspartate aminotransferase (in U/L)
#'
#' * `ALT`: Alanine aminotransferase (in U/L)
#'
#' * `GLDH`: Glutamate dehydrogenase (in U/L)
#'
#' * `OCT`: Ornithine carbamyltransferase (in U/L)
#'
#' @source
#'
#' Data from Albert and Harris (1984, Chapter 5, Appendix I), and is
#' also provided by the
#' [\pkg{pmlr}](https://cran.r-project.org/package=pmlr) R package.
#'
#' @references
#'
#' Albert A, Harris E K (1984). *Multivariate Interpretation of
#' Clinical Laboratory Data*. Dekker: New York.
#'
#' Plomteux G (1980). Multivariate analysis of an enzyme profile for
#' the differential diagnosis of viral hepatitis. *Clinical
#' Chemistry*, **26**, 1897-1899.
#'
"enzymes"
|