File: brglmFit.Rd

package info (click to toggle)
r-cran-brglm2 0.9.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 872 kB
  • sloc: ansic: 52; makefile: 5
file content (311 lines) | stat: -rw-r--r-- 13,969 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/brglmFit.R, R/zzz_conventions.R
\name{brglmFit}
\alias{brglmFit}
\alias{brglm_fit}
\title{Fitting function for \code{\link[=glm]{glm()}} for reduced-bias estimation and
inference}
\usage{
brglmFit(
  x,
  y,
  weights = rep(1, nobs),
  start = NULL,
  etastart = NULL,
  mustart = NULL,
  offset = rep(0, nobs),
  family = gaussian(),
  control = list(),
  intercept = TRUE,
  fixed_totals = NULL,
  singular.ok = TRUE
)

brglm_fit(
  x,
  y,
  weights = rep(1, nobs),
  start = NULL,
  etastart = NULL,
  mustart = NULL,
  offset = rep(0, nobs),
  family = gaussian(),
  control = list(),
  intercept = TRUE,
  fixed_totals = NULL,
  singular.ok = TRUE
)
}
\arguments{
\item{x}{a design matrix of dimension \code{n * p}.}

\item{y}{a vector of observations of length \code{n}.}

\item{weights}{an optional vector of \sQuote{prior weights} to be used
    in the fitting process.  Should be \code{NULL} or a numeric vector.}

\item{start}{starting values for the parameters in the linear
predictor. If \code{NULL} (default) then the maximum likelihood
estimates are calculated and used as starting values.}

\item{etastart}{applied only when start is not \code{NULL}. Starting
values for the linear predictor to be passed to
\code{\link[=glm.fit]{glm.fit()}} when computing starting values using maximum
likelihood.}

\item{mustart}{applied only when start is not \code{NULL}. Starting
values for the vector of means to be passed to
\code{\link[=glm.fit]{glm.fit()}} when computing starting values using maximum
likelihood.}

\item{offset}{this can be used to specify an \emph{a priori} known
    component to be included in the linear predictor during fitting.
    This should be \code{NULL} or a numeric vector of length equal to
    the number of cases.  One or more \code{\link[stats]{offset}} terms can be
    included in the formula instead or as well, and if more than one is
    specified their sum is used.  See \code{\link[stats]{model.offset}}.}

\item{family}{a description of the error distribution and link
    function to be used in the model.  For \code{glm} this can be a
    character string naming a family function, a family function or the
    result of a call to a family function.  For \code{glm.fit} only the
    third option is supported.  (See \code{\link[stats]{family}} for details of
    family functions.)}

\item{control}{a list of parameters controlling the fitting
process. See \code{\link[=brglmControl]{brglmControl()}} for details.}

\item{intercept}{logical. Should an intercept be included in the
    \emph{null} model?}

\item{fixed_totals}{effective only when \code{family} is
\code{\link[=poisson]{poisson()}}. Either \code{NULL} (no effect) or a vector that
indicates which counts must be treated as a group. See Details
for more information and \code{\link[=brmultinom]{brmultinom()}}.}

\item{singular.ok}{logical. If \code{FALSE}, a singular model is an
error.}
}
\description{
\code{\link[=brglmFit]{brglmFit()}} is a fitting method for \code{\link[=glm]{glm()}} that fits generalized
linear models using implicit and explicit bias reduction methods
(Kosmidis, 2014), and other penalized maximum likelihood
methods. Currently supported methods include the mean bias-reducing
adjusted scores approach in Firth (1993) and Kosmidis & Firth
(2009), the median bias-reduction adjusted scores approach in Kenne
Pagui et al. (2017), the correction of the asymptotic bias in
Cordeiro & McCullagh (1991), the mixed bias-reduction adjusted
scores approach in Kosmidis et al (2020), maximum penalized
likelihood with powers of the Jeffreys prior as penalty, and
maximum likelihood. Estimation is performed using a quasi Fisher
scoring iteration (see \code{vignette("iteration", "brglm2")}, which, in
the case of mean-bias reduction, resembles an iterative correction
of the asymptotic bias of the Fisher scoring iterates.
}
\details{
A detailed description of the supported adjustments and the quasi
Fisher scoring iteration is given in the iteration vignette (see,
\code{vignette("iteration", "brglm2")} or Kosmidis et al, 2020).  A
shorter description of the quasi Fisher scoring iteration is also
given in one of the vignettes of the \emph{enrichwith} R package (see,
\url{https://cran.r-project.org/package=enrichwith/vignettes/bias.html}).
Kosmidis and Firth (2010) describe a parallel quasi Newton-Raphson
iteration with the same stationary point.

In the special case of generalized linear models for binomial,
Poisson and multinomial responses, the adjusted score equation
approaches for \code{type = "AS_mixed"}, \code{type = "AS_mean"}, and \code{type = "AS_median"} (see below for what methods each \code{type} corresponds)
return estimates with improved frequentist properties, that are
also always finite, even in cases where the maximum likelihood
estimates are infinite (e.g. complete and quasi-complete separation
in multinomial regression). See, Kosmidis and Firth (2021) for a
proof for binomial-response GLMs with Jeffreys-prior penalties to
the log-likelihood, which is equivalent to mean bias reduction for
logistic regression. See, also,
\code{\link[detectseparation:detect_separation]{detectseparation::detect_separation()}} and
\code{\link[detectseparation:check_infinite_estimates]{detectseparation::check_infinite_estimates()}} for pre-fit and
post-fit methods for the detection of infinite estimates in
binomial response generalized linear models.

The type of score adjustment to be used is specified through the
\code{type} argument (see \code{\link[=brglmControl]{brglmControl()}} for details). The available
options are
\itemize{
\item \code{type = "AS_mixed"}: the mixed bias-reducing score adjustments in
Kosmidis et al (2020) that result in mean bias reduction for the
regression parameters and median bias reduction for the dispersion
parameter, if any; default.
\item \code{type = "AS_mean"}: the mean bias-reducing score adjustments in
Firth, 1993 and Kosmidis & Firth, 2009. \code{type = "AS_mixed"} and
\code{type = "AS_mean"} will return the same results when \code{family} is
\code{\link[=binomial]{binomial()}} or \code{\link[=poisson]{poisson()}}, i.e. when the dispersion is fixed
\item \code{type = "AS_median"}: the median bias-reducing score
adjustments in Kenne Pagui et al. (2017)
\item \code{type = "MPL_Jeffreys"}: maximum penalized likelihood
with powers of the Jeffreys prior as penalty.
\item \code{type = "ML"}: maximum likelihood.
\item \code{type = "correction"}: asymptotic bias correction, as in
Cordeiro & McCullagh (1991).
}

The null deviance is evaluated based on the fitted values using the
method specified by the \code{type} argument (see \code{\link[=brglmControl]{brglmControl()}}).

The \code{family} argument of the current version of \code{\link[=brglmFit]{brglmFit()}} can
accept any combination of \code{\link[=family]{"family"}} objects and link functions,
including families with user-specified link functions, \code{\link[=mis]{mis()}}
links, and \code{\link[=power]{power()}} links, but excluding \code{\link[=quasi]{quasi()}},
\code{\link[=quasipoisson]{quasipoisson()}} and \code{\link[=quasibinomial]{quasibinomial()}} families.

The description of \code{method} argument and the \verb{Fitting functions}
section in \code{\link[=glm]{glm()}} gives information on supplying fitting
methods to \code{\link[=glm]{glm()}}.

\code{fixed_totals} specifies groups of observations for which the sum
of the means of a Poisson model will be held fixed to the observed
count for each group. This argument is used internally in
\code{\link[=brmultinom]{brmultinom()}} and \code{\link[=bracl]{bracl()}} for baseline-category logit models and
adjacent category logit models, respectively.

\code{\link[=brglm_fit]{brglm_fit()}} is an alias to \code{\link[=brglmFit]{brglmFit()}}.
}
\examples{
## The lizards example from ?brglm::brglm
data("lizards")
# Fit the model using maximum likelihood
lizardsML <- glm(cbind(grahami, opalinus) ~ height + diameter +
                 light + time, family = binomial(logit), data = lizards,
                 method = "glm.fit")
# Mean bias-reduced fit:
lizardsBR_mean <- glm(cbind(grahami, opalinus) ~ height + diameter +
                      light + time, family = binomial(logit), data = lizards,
                      method = "brglmFit")
# Median bias-reduced fit:
lizardsBR_median <- glm(cbind(grahami, opalinus) ~ height + diameter +
                        light + time, family = binomial(logit), data = lizards,
                        method = "brglmFit", type = "AS_median")
summary(lizardsML)
summary(lizardsBR_median)
summary(lizardsBR_mean)

# Maximum penalized likelihood with Jeffreys prior penatly
lizards_Jeffreys <- glm(cbind(grahami, opalinus) ~ height + diameter +
                        light + time, family = binomial(logit), data = lizards,
                        method = "brglmFit", type = "MPL_Jeffreys")
# lizards_Jeffreys is the same fit as lizardsBR_mean (see Firth, 1993)
all.equal(coef(lizardsBR_mean), coef(lizards_Jeffreys))

# Maximum penalized likelihood with powers of the Jeffreys prior as
# penalty. See Kosmidis & Firth (2021) for the finiteness and
# shrinkage properties of the maximum penalized likelihood
# estimators in binomial response models
\donttest{
a <- seq(0, 20, 0.5)
coefs <- sapply(a, function(a) {
      out <- glm(cbind(grahami, opalinus) ~ height + diameter +
             light + time, family = binomial(logit), data = lizards,
             method = "brglmFit", type = "MPL_Jeffreys", a = a)
      coef(out)
})
# Illustration of shrinkage as a grows
matplot(a, t(coefs), type = "l", col = 1, lty = 1)
abline(0, 0, col = "grey")
}

\donttest{
## Another example from
## King, Gary, James E. Alt, Nancy Elizabeth Burns and Michael Laver
## (1990).  "A Unified Model of Cabinet Dissolution in Parliamentary
## Democracies", _American Journal of Political Science_, **34**, 846-870

data("coalition", package = "brglm2")
# The maximum likelihood fit with log link
coalitionML <- glm(duration ~ fract + numst2, family = Gamma, data = coalition)
# The mean bias-reduced fit
coalitionBR_mean <- update(coalitionML, method = "brglmFit")
# The bias-corrected fit
coalitionBC <- update(coalitionML, method = "brglmFit", type = "correction")
# The median bias-corrected fit
coalitionBR_median <- update(coalitionML, method = "brglmFit", type = "AS_median")
}

\donttest{
## An example with offsets from Venables & Ripley (2002, p.189)
data("anorexia", package = "MASS")

anorexML <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
                family = gaussian, data = anorexia)
anorexBC <- update(anorexML, method = "brglmFit", type = "correction")
anorexBR_mean <- update(anorexML, method = "brglmFit")
anorexBR_median <- update(anorexML, method = "brglmFit", type = "AS_median")

# All methods return the same estimates for the regression
# parameters because the maximum likelihood estimator is normally
# distributed around the `true` value under the model (hence, both
# mean and component-wise median unbiased). The Wald tests for
# anorexBC and anorexBR_mean differ from anorexML because the
# bias-reduced estimator of the dispersion is the unbiased, by
# degree of freedom adjustment (divide by n - p), estimator of the
# residual variance. The Wald tests from anorexBR_median are based
# on the median bias-reduced estimator of the dispersion that
# results from a different adjustment of the degrees of freedom
# (divide by n - p - 2/3)
summary(anorexML)
summary(anorexBC)
summary(anorexBR_mean)
summary(anorexBR_median)
}

## endometrial data from Heinze & Schemper (2002) (see ?endometrial)
data("endometrial", package = "brglm2")
endometrialML <- glm(HG ~ NV + PI + EH, data = endometrial,
                     family = binomial("probit"))
endometrialBR_mean <- update(endometrialML, method = "brglmFit",
                             type = "AS_mean")
endometrialBC <- update(endometrialML, method = "brglmFit",
                        type = "correction")
endometrialBR_median <- update(endometrialML, method = "brglmFit",
                               type = "AS_median")
summary(endometrialML)
summary(endometrialBC)
summary(endometrialBR_mean)
summary(endometrialBR_median)

}
\references{
Kosmidis I, Firth D (2021). Jeffreys-prior penalty, finiteness
and shrinkage in binomial-response generalized linear
models. \emph{Biometrika}, \strong{108}, 71-82. \doi{10.1093/biomet/asaa052}.

Kosmidis I, Kenne Pagui E C, Sartori N (2020). Mean and median bias
reduction in generalized linear models. \emph{Statistics and Computing},
\strong{30}, 43-59. \doi{10.1007/s11222-019-09860-6}.

Cordeiro G M, McCullagh P (1991). Bias correction in generalized
linear models. \emph{Journal of the Royal Statistical Society. Series B
(Methodological)}, \strong{53}, 629-643. \doi{10.1111/j.2517-6161.1991.tb01852.x}.

Firth D (1993). Bias reduction of maximum likelihood estimates.
\emph{Biometrika}. \strong{80}, 27-38. \doi{10.2307/2336755}.

Kenne Pagui E C, Salvan A, Sartori N (2017). Median bias
reduction of maximum likelihood estimates. \emph{Biometrika}, \strong{104},
923–938. \doi{10.1093/biomet/asx046}.

Kosmidis I, Firth D (2009). Bias reduction in exponential family
nonlinear models. \emph{Biometrika}, \strong{96}, 793-804. \doi{10.1093/biomet/asp055}.

Kosmidis I, Firth D (2010). A generic algorithm for reducing
bias in parametric estimation. \emph{Electronic Journal of Statistics},
\strong{4}, 1097-1112. \doi{10.1214/10-EJS579}.

Kosmidis I (2014). Bias in parametric estimation: reduction and
useful side-effects. \emph{WIRE Computational Statistics}, \strong{6},
185-196. \doi{10.1002/wics.1296}.
}
\seealso{
\code{\link[=brglmControl]{brglmControl()}}, \code{\link[=glm.fit]{glm.fit()}}, \code{\link[=glm]{glm()}}
}
\author{
Ioannis Kosmidis \verb{[aut, cre]} \email{ioannis.kosmidis@warwick.ac.uk}, Euloge Clovis Kenne Pagui \verb{[ctb]} \email{kenne@stat.unipd.it}
}