1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/brnb.R
\name{brnb}
\alias{brnb}
\title{Bias reduction for negative binomial regression models}
\usage{
brnb(
formula,
data,
subset,
weights = NULL,
offset = NULL,
link = "log",
start = NULL,
etastart = NULL,
mustart = NULL,
control = list(...),
na.action,
model = TRUE,
x = FALSE,
y = TRUE,
contrasts = NULL,
intercept = TRUE,
singular.ok = TRUE,
...
)
}
\arguments{
\item{formula}{an object of class \code{"\link[stats]{formula}"} (or one that
can be coerced to that class): a symbolic description of the
model to be fitted. The details of model specification are given
under \sQuote{Details}.}
\item{data}{an optional data frame, list or environment (or object
coercible by \code{\link{as.data.frame}} to a data frame) containing
the variables in the model. If not found in \code{data}, the
variables are taken from \code{environment(formula)},
typically the environment from which \code{glm} is called.}
\item{subset}{an optional vector specifying a subset of observations
to be used in the fitting process.}
\item{weights}{an optional vector of \sQuote{prior weights} to be used
in the fitting process. Should be \code{NULL} or a numeric vector.}
\item{offset}{this can be used to specify an \emph{a priori} known
component to be included in the linear predictor during fitting.
This should be \code{NULL} or a numeric vector of length equal to
the number of cases. One or more \code{\link[stats]{offset}} terms can be
included in the formula instead or as well, and if more than one is
specified their sum is used. See \code{\link[stats]{model.offset}}.}
\item{link}{The link function. Currently must be one of \code{"log"},
\code{"sqrt"} or \code{"identity"}.}
\item{start}{starting values for the parameters in the linear predictor.}
\item{etastart}{starting values for the linear predictor.}
\item{mustart}{starting values for the vector of means.}
\item{control}{a list of parameters for controlling the fitting
process. See \code{\link[=brglmControl]{brglmControl()}} for details.}
\item{na.action}{a function which indicates what should happen
when the data contain \code{NA}s. The default is set by
the \code{na.action} setting of \code{\link{options}}, and is
\code{\link[stats]{na.fail}} if that is unset. The \sQuote{factory-fresh}
default is \code{\link[stats]{na.omit}}. Another possible value is
\code{NULL}, no action. Value \code{\link[stats]{na.exclude}} can be useful.}
\item{model}{a logical value indicating whether \emph{model frame}
should be included as a component of the returned value.}
\item{x, y}{For \code{glm}:
logical values indicating whether the response vector and model
matrix used in the fitting process should be returned as components
of the returned value.
For \code{glm.fit}: \code{x} is a design matrix of dimension
\code{n * p}, and \code{y} is a vector of observations of length
\code{n}.
}
\item{contrasts}{an optional list. See the \code{contrasts.arg}
of \code{model.matrix.default}.}
\item{intercept}{logical. Should an intercept be included in the
\emph{null} model?}
\item{singular.ok}{logical; if \code{FALSE} a singular fit is an
error.}
\item{...}{
For \code{glm}: arguments to be used to form the default
\code{control} argument if it is not supplied directly.
For \code{weights}: further arguments passed to or from other methods.
}
}
\value{
A fitted model object of class \code{\link[=brnb]{"brnb"}} inheriting
from \code{\link[=negbin]{"negbin"}} and \code{\link[=brglmFit]{"brglmFit"}}. The
object is similar to the output of \code{\link[=brglmFit]{brglmFit()}} but contains
four additional components: \code{theta} for the maximum likelihood
estimate of the dispersion parameter as in \code{\link[MASS:glm.nb]{MASS::glm.nb()}},
\code{vcov.mean} for the estimated variance-covariance matrix of the
regression coefficients, \code{vcov.dispersion} for the estimated
variance of the dispersion parameter in the chosen
parameterization (using the expected information), and
\code{twologlik} for twice the log-likelihood function.
}
\description{
\code{\link[=brnb]{brnb()}} is a function that fits negative binomial regression
models using implicit and explicit bias reduction methods.
}
\details{
A detailed description of the fitting procedure is given in the
iteration vignette (see, \code{vignette("iteration", "brglm2")} and
Kosmidis et al, 2020). The number of iterations when estimating
parameters are controlled by the \code{maxit} argument of
\code{\link[=brglmControl]{brglmControl()}}.
The type of score adjustment to be used is specified through the
\code{type} argument (see \code{\link[=brglmControl]{brglmControl()}} for details).
The available options are:
\itemize{
\item \code{type = "AS_mixed"}: the mixed bias-reducing score
adjustments in Kosmidis et al (2020) that result in mean bias
reduction for the regression parameters and median bias reduction
for the dispersion parameter, if any; default.
\item \code{type = "AS_mean"}: the mean bias-reducing score
adjustments in Firth (1993) and Kosmidis & Firth (2009).
\item \code{type = "AS_median"}: the median bias-reducing score
adjustments in Kenne Pagui et al. (2017)
\item \code{type = "MPL_Jeffreys"}: maximum penalized likelihood
with powers of the Jeffreys prior as penalty.
\item \code{type = "ML"}: maximum likelihood.
\item \code{type = "correction"}: asymptotic bias correction, as in
Cordeiro & McCullagh (1991).
}
The choice of the parameterization for the dispersion is controlled
by the \code{transformation} argument (see \code{\link[=brglmControl]{brglmControl()}} for
details). The default is \code{"identity"}. Using \code{transformation = "inverse"} uses the dispersion parameterization that
\code{\link[MASS:glm.nb]{MASS::glm.nb()}} uses.
}
\examples{
## Example in Saha, K., & Paul, S. (2005). Bias-corrected maximum
## likelihood estimator of the negative binomial dispersion
## parameter. Biometrics, 61, 179--185.
#
# Number of revertant colonies of salmonella data
salmonella <- data.frame(freq = c(15, 16, 16, 27, 33, 20,
21, 18, 26, 41, 38, 27,
29, 21, 33, 60, 41, 42),
dose = rep(c(0, 10, 33, 100, 333, 1000), 3),
observation = rep(1:3, each = 6))
# Maximum likelihood fit with glm.nb of MASS
salmonella_fm <- freq ~ dose + log(dose + 10)
fitML_glmnb <- MASS::glm.nb(salmonella_fm, data = salmonella)
# Maximum likelihood fit with brnb
fitML <- brnb(salmonella_fm, data = salmonella,
link = "log", transformation = "inverse", type = "ML")
# Mean bias-reduced fit
fitBR_mean <- update(fitML, type = "AS_mean")
# Median bias-reduced fit
fitBR_median <- update(fitML, type = "AS_median")
# Mixed bias-reduced fit
fitBR_mixed <- update(fitML, type = "AS_mixed")
# Mean bias-corrected fit
fitBC_mean <- update(fitML, type = "correction")
# Penalized likelihood with Jeffreys-prior penalty
fit_Jeffreys <- update(fitML, type = "MPL_Jeffreys")
# The parameter estimates from glm.nb and brnb with type = "ML" are
# numerically the same
all.equal(c(coef(fitML_glmnb), fitML_glmnb$theta),
coef(fitML, model = "full"), check.attributes = FALSE)
# Because of the invariance properties of the maximum likelihood,
# median reduced-bias, and mixed reduced-bias estimators the
# estimate of a monotone function of the dispersion should be
# (numerically) the same as the function of the estimate of the
# dispersion:
# ML
coef(fitML, model = "dispersion")
1 / coef(update(fitML, transformation = "identity"), model = "dispersion")
# Median BR
coef(fitBR_median, model = "dispersion")
1 / coef(update(fitBR_median, transformation = "identity"), model = "dispersion")
# Mixed BR
coef(fitBR_mixed, model = "dispersion")
1 / coef(update(fitBR_mixed, transformation = "identity"), model = "dispersion")
## The same is not true for mean BR
coef(fitBR_mean, model = "dispersion")
1 / coef(update(fitBR_mean, transformation = "identity"), model = "dispersion")
\donttest{
## An example from Venables & Ripley (2002, p.169).
data("quine", package = "MASS")
quineML <- brnb(Days ~ Sex/(Age + Eth*Lrn), link = "sqrt", transformation="inverse",
data = quine, type="ML")
quineBR_mean <- update(quineML, type = "AS_mean")
quineBR_median <- update(quineML, type = "AS_median")
quineBR_mixed <- update(quineML, type = "AS_mixed")
quine_Jeffreys <- update(quineML, type = "MPL_Jeffreys")
fits <- list(ML = quineML,
AS_mean = quineBR_mean,
AS_median = quineBR_median,
AS_mixed = quineBR_mixed,
MPL_Jeffreys = quine_Jeffreys)
sapply(fits, coef, model = "full")
}
}
\references{
Cordeiro G M, McCullagh P (1991). Bias correction in generalized
linear models. \emph{Journal of the Royal Statistical Society. Series B
(Methodological)}, \strong{53}, 629-643. \doi{10.1111/j.2517-6161.1991.tb01852.x}.
Firth D (1993). Bias reduction of maximum likelihood estimates.
\emph{Biometrika}. \strong{80}, 27-38. \doi{10.2307/2336755}.
Kenne Pagui E C, Salvan A, Sartori N (2017). Median bias
reduction of maximum likelihood estimates. \emph{Biometrika}, \strong{104},
923–938. \doi{10.1093/biomet/asx046}.
Kosmidis I, Kenne Pagui E C, Sartori N (2020). Mean and median bias
reduction in generalized linear models. \emph{Statistics and Computing},
\strong{30}, 43-59. \doi{10.1007/s11222-019-09860-6}.
Kosmidis I, Firth D (2009). Bias reduction in exponential family
nonlinear models. \emph{Biometrika}, \strong{96}, 793-804. \doi{10.1093/biomet/asp055}.
}
\author{
Euloge Clovis Kenne Pagui \verb{[aut]} \email{kenne@stat.unipd.it}, Ioannis Kosmidis \verb{[aut, cre]} \email{ioannis.kosmidis@warwick.ac.uk}
}
|