1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/brmultinom.R
\name{predict.brmultinom}
\alias{predict.brmultinom}
\title{Predict method for \link{brmultinom} fits}
\usage{
\method{predict}{brmultinom}(object, newdata, type = c("class", "probs"), ...)
}
\arguments{
\item{object}{a fitted object of class inheriting from
\code{\link[=brmultinom]{"brmultinom"}}.}
\item{newdata}{optionally, a data frame in which to look for
variables with which to predict. If omitted, the fitted linear
predictors are used.}
\item{type}{the type of prediction required. The default is
\code{"class"}, which produces predictions of the response category
at the covariate values supplied in \code{"newdata"}, selecting the
category with the largest probability; the alternative
\code{"probs"} returns all category probabilities at the covariate
values supplied in \code{newdata}.}
\item{...}{further arguments passed to or from other methods.}
}
\value{
If \code{type = "class"} a vector with the predicted response
categories; if \code{type = "probs"} a matrix of probabilities for all
response categories at \code{newdata}.
}
\description{
Obtain class and probability predictions from a fitted baseline
category logits model.
}
\details{
If \code{newdata} is omitted the predictions are based on the data used
for the fit.
}
\examples{
data("housing", package = "MASS")
# Maximum likelihood using brmultinom with baseline category 'Low'
houseML1 <- brmultinom(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing, type = "ML", ref = 1)
# New data
newdata <- expand.grid(Infl = c("Low", "Medium"),
Type = c("Tower", "Atrium", "Terrace"),
Cont = c("Low", NA, "High"))
## Predictions
sapply(c("class", "probs"), function(what) predict(houseML1, newdata, what))
}
|