1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/priors.R
\name{default_prior.default}
\alias{default_prior.default}
\title{Default Priors for \pkg{brms} Models}
\usage{
\method{default_prior}{default}(
object,
data,
family = gaussian(),
autocor = NULL,
data2 = NULL,
knots = NULL,
drop_unused_levels = TRUE,
sparse = NULL,
...
)
}
\arguments{
\item{object}{An object of class \code{\link[stats:formula]{formula}},
\code{\link{brmsformula}}, or \code{\link{mvbrmsformula}} (or one that can
be coerced to that classes): A symbolic description of the model to be
fitted. The details of model specification are explained in
\code{\link{brmsformula}}.}
\item{data}{An object of class \code{data.frame} (or one that can be coerced
to that class) containing data of all variables used in the model.}
\item{family}{A description of the response distribution and link function to
be used in the model. This can be a family function, a call to a family
function or a character string naming the family. Every family function has
a \code{link} argument allowing to specify the link function to be applied
on the response variable. If not specified, default links are used. For
details of supported families see \code{\link{brmsfamily}}. By default, a
linear \code{gaussian} model is applied. In multivariate models,
\code{family} might also be a list of families.}
\item{autocor}{(Deprecated) An optional \code{\link{cor_brms}} object
describing the correlation structure within the response variable (i.e.,
the 'autocorrelation'). See the documentation of \code{\link{cor_brms}} for
a description of the available correlation structures. Defaults to
\code{NULL}, corresponding to no correlations. In multivariate models,
\code{autocor} might also be a list of autocorrelation structures.
It is now recommend to specify autocorrelation terms directly
within \code{formula}. See \code{\link{brmsformula}} for more details.}
\item{data2}{A named \code{list} of objects containing data, which
cannot be passed via argument \code{data}. Required for some objects
used in autocorrelation structures to specify dependency structures
as well as for within-group covariance matrices.}
\item{knots}{Optional list containing user specified knot values to be used
for basis construction of smoothing terms. See
\code{\link[mgcv:gamm]{gamm}} for more details.}
\item{drop_unused_levels}{Should unused factors levels in the data be
dropped? Defaults to \code{TRUE}.}
\item{sparse}{(Deprecated) Logical; indicates whether the population-level
design matrices should be treated as sparse (defaults to \code{FALSE}). For
design matrices with many zeros, this can considerably reduce required
memory. Sampling speed is currently not improved or even slightly
decreased. It is now recommended to use the \code{sparse} argument of
\code{\link{brmsformula}} and related functions.}
\item{...}{Other arguments for internal usage only.}
}
\value{
A \code{brmsprior} object. That is, a data.frame with specific
columns including \code{prior}, \code{class}, \code{coef}, and \code{group}
and several rows, each providing information on a parameter (or parameter
class) on which priors can be specified. The prior column is empty except
for internal default priors.
}
\description{
Get information on all parameters (and parameter classes) for which priors
may be specified including default priors.
}
\examples{
# get all parameters and parameters classes to define priors on
(prior <- default_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson()))
# define a prior on all population-level effects a once
prior$prior[1] <- "normal(0,10)"
# define a specific prior on the population-level effect of Trt
prior$prior[5] <- "student_t(10, 0, 5)"
# verify that the priors indeed found their way into Stan's model code
stancode(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson(),
prior = prior)
}
\seealso{
\code{\link{default_prior}}, \code{\link{set_prior}}
}
|