1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#' Delete random effect terms with zero variance
#'
#' Is used in the \code{\link{cAIC}} function if \code{method = "steinian"} and
#' \code{family = "gaussian"}. The function deletes all random effects terms
#' from the call if corresponding variance parameter is estimated to zero and
#' updates the model in \code{\link[lme4]{merMod}}.
#'
#' For \code{\link{merMod}} class models:
#' Uses the \code{cnms} slot of \code{m} and the relative covariance factors to
#' rewrite the random effects part of the formula, reduced by those parameters
#' that have an optimum on the boundary. This is necessary to obtain the true
#' conditional corrected Akaike information. For the theoretical justification
#' see Greven and Kneib (2010). The reduced model formula is then updated. The
#' function deleteZeroComponents is then called iteratively to check if in the
#' updated model there are relative covariance factors parameters on the
#' boundary.
#'
#' For \code{\link[nlme]{lme}} class models:
#' ...
#'
#' @param m An object of class \code{\link[lme4]{merMod}} fitted by
#' \code{\link[lme4]{lmer}} of the lme4-package or of class
#' \code{\link[nlme]{lme}}.
#' @return An updated object of class \code{\link[lme4]{merMod}}
#' or of class \code{\link[nlme]{lme}}.
#' @section WARNINGS : For models called via \code{gamm4} or \code{gamm}
#' no automated update is available.
#' Instead a warning with terms to omit from the model is returned.
#' @author Benjamin Saefken \& David Ruegamer \& Philipp Baumann
#' @seealso \code{\link[lme4]{lme4-package}}, \code{\link[lme4]{lmer}},
#' \code{\link[lme4]{getME}}
#' @references Greven, S. and Kneib T. (2010) On the behaviour of marginal and
#' conditional AIC in linear mixed models. Biometrika 97(4), 773-789.
#' @keywords regression
#' @rdname deleteZeroComponents
#' @examples
#'
#' ## Currently no data with variance equal to zero...
#' b <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
#'
#' deleteZeroComponents(b)
#' @importFrom mgcv gamm
#' @importFrom nlme pdDiag
#' @export
deleteZeroComponents <- function(m) UseMethod("deleteZeroComponents")
#' @return \code{NULL}
#'
#' @rdname deleteZeroComponents
#' @export
deleteZeroComponents.lme <-
function(m) {
theta <- get_theta(m)
thetazero <- which(theta == 0)
if (is.null(names(theta))) {
true_re <- rep(T, length(theta))
} else {
true_re <- names(theta) == ""
}
if (length(thetazero) == 0) {
return(m)
}
varBlockMatrices <- get_ST(m)
re_name <- m$modelStruct$reStruct[1]
cnms <- attr(m$modelStruct$reStruct[[1]], "Dimnames")[1]
cnms <- cor_re(m, cnms)
smooth_names <- attr(m, "smooth_names")
cnms <- c(cnms, smooth_names)
for (i in 1:length(varBlockMatrices)) {
cnms[[i]] <- cnms[[i]][which(diag(varBlockMatrices[[i]]) != 0)]
}
# modify random argument for refit
no_re <- sum(true_re)
left_bar <- deparse(attr(re_name[[1]], "formula")[[2]])
right_bar <- names(re_name)
is_indpt <- "pdDiag" %in% class(re_name[[1]])
r_effect <- formula(re_name)
if (no_re == 3) {
if (theta[2] == 0) {
r_effect <- list()
r_effect[[right_bar]] <- pdDiag(as.formula(paste("~", left_bar)))
}
if (theta[1] == 0 & theta[2] == 0) {
r_effect <- list()
r_effect[[right_bar]] <- as.formula(paste("~ -1 + ", left_bar, "|",
right_bar))
}
if (theta[2] == 0 & theta[3] == 0) {
r_effect <- list()
r_effect[[right_bar]] <- as.formula(paste("~ 1", "|", right_bar))
}
}
if (is_indpt) {
if (theta[1] == 0) {
r_effect <- list()
r_effect[[right_bar]] <- as.formula(paste("~ -1 + ", left_bar, "|",
right_bar))
}
if (theta[2] == 0) {
r_effect <- list()
r_effect[[right_bar]] <- as.formula(paste("~ 1", "|", right_bar))
}
}
if (no_re == 1 & theta[1] == 0) cat("No random effect variance.")
if (!attr(m, "is_gamm")) {
new_lme <- update(m, formula(m), random = r_effect, evaluate = TRUE)
attr(new_lme, "is_gamm") <- FALSE
return(deleteZeroComponents(new_lme))
}
g_m <- gamm(attr(m, "gam_form"), random = r_effect, data = m$data)
attr(g_m$lme, "smooth_names") <- get_names(g_m) # old names
attr(g_m$lme, "is_gamm") <- TRUE # add indicator for mgcv::gamm
attr(g_m$lme, "gam_form") <- formula(g_m$gam) # for refit
g_m <- g_m$lme
attr(g_m, "ordered_smooth") <- sort_sterms(g_m) # names as in gamm4
return(deleteZeroComponents(g_m))
}
#' @return \code{NULL}
#'
#' @rdname deleteZeroComponents
#' @export
deleteZeroComponents.merMod <-
function(m) {
# A function that deletes all random effects terms if corresponding variance
# parameter is estimated to zero.
#
# Args:
# m = Object of class lmerMod. Obtained by lmer()
#
# Returns:
# m/newMod = A model without zero estimated variance component
#
theta <- getME(m, "theta")
thetazero <- which(theta == 0)
if (length(thetazero) == 0) { # every thing's fine
return(m)
}
if (length(theta) == length(thetazero)) { # only lm left
warning("Model has no random effects variance components larger than zero.")
return(lm(nobars(formula(m)), model.frame(m)))
}
varBlockMatrices <- getME(m, "ST")
cnms <- m@cnms
if(exists("gamm4", m@optinfo)) { # for gamm4 what to exclude from the model
for(i in 1:length(varBlockMatrices)){
if(any(diag(varBlockMatrices[[i]]) == 0)) {
termWithZero <- cnms[[i]][which(diag(varBlockMatrices[[i]]) == 0)]
cat("The term", ifelse(termWithZero=="(Intercept)",
names(cnms)[[i]],
termWithZero[[1]]),
"has zero variance components. \n")
}
}
stop("After removing the terms with zero variance components and refitting
the model cAIC can be called again.", call. = FALSE)
}
# if(is.null(m@optinfo$conv$lme4$code) ||
# m@optinfo$conv$lme4$code == -1) {
for(i in 1:length(varBlockMatrices)){
cnms[[i]] <- cnms[[i]][which(diag(varBlockMatrices[[i]]) != 0)]
}
# } else { # in case of convergence failures
# nc <- vapply(cnms, length, 1L)
# thl <- split(theta, rep.int(seq_along(nc), (nc * (nc + 1))/2))
# for (i in 1:length(nc)) {
# ranVars <- thl[[i]][1:nc[i]]
# cnms[[i]] <- cnms[[i]][which(ranVars != 0)]
# }
# }
reFormula <- cnms2formula(cnms)
if(suppressWarnings(nobars(formula(m)) == formula(m)[[2]])) {
# if there are no fixed effects
rhs <- reFormula
} else {
rhs <- c(attr(terms(nobars(formula(m))), "term.labels"), reFormula)
}
lhs <- formula(m)[[2]] # left hand side of the formula
newFormula <- reformulate(rhs, lhs) # merge both sides
newMod <- update(m, formula. = newFormula, evaluate = TRUE)
return(deleteZeroComponents(newMod))
}
|